| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfrresex | Structured version Visualization version GIF version | ||
| Description: Show without using the axiom of replacement that the restriction of the well-ordered recursion generator to a predecessor class is a set. (Contributed by Scott Fenton, 18-Nov-2024.) |
| Ref | Expression |
|---|---|
| wfrfun.1 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| wfrresex | ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 5657 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) |
| 3 | weso 5658 | . . . . 5 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 4 | sopo 5593 | . . . . 5 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Po 𝐴) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Po 𝐴) |
| 7 | simpr 484 | . . 3 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
| 8 | 2, 6, 7 | 3jca 1128 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → (𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴)) |
| 9 | wfrfun.1 | . . . 4 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
| 10 | df-wrecs 8320 | . . . 4 ⊢ wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) | |
| 11 | 9, 10 | eqtri 2757 | . . 3 ⊢ 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) |
| 12 | 11 | fprresex 8318 | . 2 ⊢ (((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) |
| 13 | 8, 12 | sylan 580 | 1 ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 Vcvv 3464 Po wpo 5572 Or wor 5573 Fr wfr 5616 Se wse 5617 We wwe 5618 dom cdm 5667 ↾ cres 5669 ∘ ccom 5671 Predcpred 6302 2nd c2nd 7996 frecscfrecs 8288 wrecscwrecs 8319 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-iota 6495 df-fun 6544 df-fn 6545 df-fv 6550 df-ov 7417 df-frecs 8289 df-wrecs 8320 |
| This theorem is referenced by: wfr2a 8357 |
| Copyright terms: Public domain | W3C validator |