MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfrresex Structured version   Visualization version   GIF version

Theorem wfrresex 8329
Description: Show without using the axiom of replacement that the restriction of the well-ordered recursion generator to a predecessor class is a set. (Contributed by Scott Fenton, 18-Nov-2024.)
Hypothesis
Ref Expression
wfrfun.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfrresex (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)

Proof of Theorem wfrresex
StepHypRef Expression
1 wefr 5665 . . . 4 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 481 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5666 . . . . 5 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5606 . . . . 5 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . . 4 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 481 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 485 . . 3 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
82, 6, 73jca 1128 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → (𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴))
9 wfrfun.1 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
10 df-wrecs 8293 . . . 4 wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
119, 10eqtri 2760 . . 3 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
1211fprresex 8291 . 2 (((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
138, 12sylan 580 1 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ 𝑋 ∈ dom 𝐹) → (𝐹 ↾ Pred(𝑅, 𝐴, 𝑋)) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3474   Po wpo 5585   Or wor 5586   Fr wfr 5627   Se wse 5628   We wwe 5629  dom cdm 5675  cres 5677  ccom 5679  Predcpred 6296  2nd c2nd 7970  frecscfrecs 8261  wrecscwrecs 8292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-iota 6492  df-fun 6542  df-fn 6543  df-fv 6548  df-ov 7408  df-frecs 8262  df-wrecs 8293
This theorem is referenced by:  wfr2a  8330
  Copyright terms: Public domain W3C validator