| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wfr1 | Structured version Visualization version GIF version | ||
| Description: The Principle of Well-Ordered Recursion, part 1 of 3. We start with an arbitrary function 𝐺. Then, using a base class 𝐴 and a set-like well-ordering 𝑅 of 𝐴, we define a function 𝐹. This function is said to be defined by "well-ordered recursion". The purpose of these three theorems is to demonstrate the properties of 𝐹. We begin by showing that 𝐹 is a function over 𝐴. (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 18-Nov-2024.) |
| Ref | Expression |
|---|---|
| wfr1.1 | ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) |
| Ref | Expression |
|---|---|
| wfr1 | ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wefr 5609 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) |
| 3 | weso 5610 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
| 4 | sopo 5546 | . . . 4 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Po 𝐴) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Po 𝐴) |
| 7 | simpr 484 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
| 8 | wfr1.1 | . . . 4 ⊢ 𝐹 = wrecs(𝑅, 𝐴, 𝐺) | |
| 9 | df-wrecs 8245 | . . . 4 ⊢ wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) | |
| 10 | 8, 9 | eqtri 2752 | . . 3 ⊢ 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd )) |
| 11 | 10 | fpr1 8236 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
| 12 | 2, 6, 7, 11 | syl3anc 1373 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Fn 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Po wpo 5525 Or wor 5526 Fr wfr 5569 Se wse 5570 We wwe 5571 ∘ ccom 5623 Fn wfn 6477 2nd c2nd 7923 frecscfrecs 8213 wrecscwrecs 8244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-frecs 8214 df-wrecs 8245 |
| This theorem is referenced by: wfr2 8260 wfr3 8261 tfr1ALT 8322 bpolylem 15955 |
| Copyright terms: Public domain | W3C validator |