MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfr1 Structured version   Visualization version   GIF version

Theorem wfr1 8331
Description: The Principle of Well-Ordered Recursion, part 1 of 3. We start with an arbitrary function 𝐺. Then, using a base class 𝐴 and a set-like well-ordering 𝑅 of 𝐴, we define a function 𝐹. This function is said to be defined by "well-ordered recursion". The purpose of these three theorems is to demonstrate the properties of 𝐹. We begin by showing that 𝐹 is a function over 𝐴. (Contributed by Scott Fenton, 22-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.) (Revised by Scott Fenton, 18-Nov-2024.)
Hypothesis
Ref Expression
wfr1.1 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
Assertion
Ref Expression
wfr1 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)

Proof of Theorem wfr1
StepHypRef Expression
1 wefr 5665 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 481 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5666 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5606 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . 3 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 481 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 485 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
8 wfr1.1 . . . 4 𝐹 = wrecs(𝑅, 𝐴, 𝐺)
9 df-wrecs 8293 . . . 4 wrecs(𝑅, 𝐴, 𝐺) = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
108, 9eqtri 2760 . . 3 𝐹 = frecs(𝑅, 𝐴, (𝐺 ∘ 2nd ))
1110fpr1 8284 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
122, 6, 7, 11syl3anc 1371 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝐹 Fn 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541   Po wpo 5585   Or wor 5586   Fr wfr 5627   Se wse 5628   We wwe 5629  ccom 5679   Fn wfn 6535  2nd c2nd 7970  frecscfrecs 8261  wrecscwrecs 8292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-frecs 8262  df-wrecs 8293
This theorem is referenced by:  wfr2  8332  wfr3  8333  wfr3OLD  8334  tfr1ALT  8396  bpolylem  15988
  Copyright terms: Public domain W3C validator