MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis2fg Structured version   Visualization version   GIF version

Theorem wfis2fg 6168
Description: Well-Founded Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.)
Hypotheses
Ref Expression
wfis2fg.1 𝑦𝜓
wfis2fg.2 (𝑦 = 𝑧 → (𝜑𝜓))
wfis2fg.3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis2fg ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦,𝑧)

Proof of Theorem wfis2fg
StepHypRef Expression
1 sbsbc 3702 . . . . 5 ([𝑧 / 𝑦]𝜑[𝑧 / 𝑦]𝜑)
2 wfis2fg.1 . . . . . 6 𝑦𝜓
3 wfis2fg.2 . . . . . 6 (𝑦 = 𝑧 → (𝜑𝜓))
42, 3sbiev 2322 . . . . 5 ([𝑧 / 𝑦]𝜑𝜓)
51, 4bitr3i 280 . . . 4 ([𝑧 / 𝑦]𝜑𝜓)
65ralbii 3097 . . 3 (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓)
7 wfis2fg.3 . . 3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
86, 7syl5bi 245 . 2 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑𝜑))
98wfisg 6166 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wnf 1785  [wsb 2069  wcel 2111  wral 3070  [wsbc 3698   Se wse 5485   We wwe 5486  Predcpred 6130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-br 5037  df-opab 5099  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-cnv 5536  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131
This theorem is referenced by:  wfis2f  6169  wfis2g  6170
  Copyright terms: Public domain W3C validator