MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis2fg Structured version   Visualization version   GIF version

Theorem wfis2fg 6300
Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Hypotheses
Ref Expression
wfis2fg.1 𝑦𝜓
wfis2fg.2 (𝑦 = 𝑧 → (𝜑𝜓))
wfis2fg.3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis2fg ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦,𝑧)

Proof of Theorem wfis2fg
StepHypRef Expression
1 wefr 5604 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 480 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5605 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5541 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . 3 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 480 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 484 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
8 wfis2fg.3 . . 3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
9 wfis2fg.1 . . 3 𝑦𝜓
10 wfis2fg.2 . . 3 (𝑦 = 𝑧 → (𝜑𝜓))
118, 9, 10frpoins2fg 6291 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
122, 6, 7, 11syl3anc 1373 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wnf 1784  wcel 2111  wral 3047   Po wpo 5520   Or wor 5521   Fr wfr 5564   Se wse 5565   We wwe 5566  Predcpred 6247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248
This theorem is referenced by:  wfis2f  6301  wfis2g  6302
  Copyright terms: Public domain W3C validator