![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfis2fg | Structured version Visualization version GIF version |
Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
Ref | Expression |
---|---|
wfis2fg.1 | ⊢ Ⅎ𝑦𝜓 |
wfis2fg.2 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
wfis2fg.3 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
Ref | Expression |
---|---|
wfis2fg | ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wefr 5666 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Fr 𝐴) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Fr 𝐴) |
3 | weso 5667 | . . . 4 ⊢ (𝑅 We 𝐴 → 𝑅 Or 𝐴) | |
4 | sopo 5607 | . . . 4 ⊢ (𝑅 Or 𝐴 → 𝑅 Po 𝐴) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝑅 We 𝐴 → 𝑅 Po 𝐴) |
6 | 5 | adantr 481 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Po 𝐴) |
7 | simpr 485 | . 2 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝑅 Se 𝐴) | |
8 | wfis2fg.3 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
9 | wfis2fg.1 | . . 3 ⊢ Ⅎ𝑦𝜓 | |
10 | wfis2fg.2 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
11 | 8, 9, 10 | frpoins2fg 6345 | . 2 ⊢ ((𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
12 | 2, 6, 7, 11 | syl3anc 1371 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 Ⅎwnf 1785 ∈ wcel 2106 ∀wral 3061 Po wpo 5586 Or wor 5587 Fr wfr 5628 Se wse 5629 We wwe 5630 Predcpred 6299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-cnv 5684 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 |
This theorem is referenced by: wfis2f 6359 wfis2g 6360 |
Copyright terms: Public domain | W3C validator |