MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wfis2fg Structured version   Visualization version   GIF version

Theorem wfis2fg 6244
Description: Well-Ordered Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Hypotheses
Ref Expression
wfis2fg.1 𝑦𝜓
wfis2fg.2 (𝑦 = 𝑧 → (𝜑𝜓))
wfis2fg.3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
Assertion
Ref Expression
wfis2fg ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴,𝑧   𝜑,𝑧   𝑦,𝑅,𝑧
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑦,𝑧)

Proof of Theorem wfis2fg
StepHypRef Expression
1 wefr 5570 . . 3 (𝑅 We 𝐴𝑅 Fr 𝐴)
21adantr 480 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Fr 𝐴)
3 weso 5571 . . . 4 (𝑅 We 𝐴𝑅 Or 𝐴)
4 sopo 5513 . . . 4 (𝑅 Or 𝐴𝑅 Po 𝐴)
53, 4syl 17 . . 3 (𝑅 We 𝐴𝑅 Po 𝐴)
65adantr 480 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Po 𝐴)
7 simpr 484 . 2 ((𝑅 We 𝐴𝑅 Se 𝐴) → 𝑅 Se 𝐴)
8 wfis2fg.3 . . 3 (𝑦𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓𝜑))
9 wfis2fg.1 . . 3 𝑦𝜓
10 wfis2fg.2 . . 3 (𝑦 = 𝑧 → (𝜑𝜓))
118, 9, 10frpoins2fg 6232 . 2 ((𝑅 Fr 𝐴𝑅 Po 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
122, 6, 7, 11syl3anc 1369 1 ((𝑅 We 𝐴𝑅 Se 𝐴) → ∀𝑦𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wnf 1787  wcel 2108  wral 3063   Po wpo 5492   Or wor 5493   Fr wfr 5532   Se wse 5533   We wwe 5534  Predcpred 6190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191
This theorem is referenced by:  wfis2f  6246  wfis2g  6247
  Copyright terms: Public domain W3C validator