![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wfis2fg | Structured version Visualization version GIF version |
Description: Well-Founded Induction Schema, using implicit substitution. (Contributed by Scott Fenton, 11-Feb-2011.) |
Ref | Expression |
---|---|
wfis2fg.1 | ⊢ Ⅎ𝑦𝜓 |
wfis2fg.2 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) |
wfis2fg.3 | ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) |
Ref | Expression |
---|---|
wfis2fg | ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbsbc 3680 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ [𝑧 / 𝑦]𝜑) | |
2 | wfis2fg.1 | . . . . . 6 ⊢ Ⅎ𝑦𝜓 | |
3 | wfis2fg.2 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜓)) | |
4 | 2, 3 | sbie 2469 | . . . . 5 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝜓) |
5 | 1, 4 | bitr3i 269 | . . . 4 ⊢ ([𝑧 / 𝑦]𝜑 ↔ 𝜓) |
6 | 5 | ralbii 3110 | . . 3 ⊢ (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 ↔ ∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓) |
7 | wfis2fg.3 | . . 3 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)𝜓 → 𝜑)) | |
8 | 6, 7 | syl5bi 234 | . 2 ⊢ (𝑦 ∈ 𝐴 → (∀𝑧 ∈ Pred (𝑅, 𝐴, 𝑦)[𝑧 / 𝑦]𝜑 → 𝜑)) |
9 | 8 | wfisg 6019 | 1 ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ∀𝑦 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 Ⅎwnf 1747 [wsb 2016 ∈ wcel 2051 ∀wral 3083 [wsbc 3676 Se wse 5361 We wwe 5362 Predcpred 5983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pr 5183 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-sn 4437 df-pr 4439 df-op 4443 df-br 4927 df-opab 4989 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-cnv 5412 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 |
This theorem is referenced by: wfis2f 6022 wfis2g 6023 |
Copyright terms: Public domain | W3C validator |