MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq1 Structured version   Visualization version   GIF version

Theorem wrecseq1 8324
Description: Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq1 (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))

Proof of Theorem wrecseq1
StepHypRef Expression
1 eqid 2725 . 2 𝐴 = 𝐴
2 eqid 2725 . 2 𝐹 = 𝐹
3 wrecseq123 8320 . 2 ((𝑅 = 𝑆𝐴 = 𝐴𝐹 = 𝐹) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))
41, 2, 3mp3an23 1449 1 (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wrecscwrecs 8317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-xp 5684  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-iota 6501  df-fv 6557  df-ov 7422  df-frecs 8287  df-wrecs 8318
This theorem is referenced by:  csbrecsg  36938
  Copyright terms: Public domain W3C validator