MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq1 Structured version   Visualization version   GIF version

Theorem wrecseq1 7960
Description: Equality theorem for the well-founded recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq1 (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))

Proof of Theorem wrecseq1
StepHypRef Expression
1 eqid 2758 . 2 𝐴 = 𝐴
2 eqid 2758 . 2 𝐹 = 𝐹
3 wrecseq123 7958 . 2 ((𝑅 = 𝑆𝐴 = 𝐴𝐹 = 𝐹) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))
41, 2, 3mp3an23 1450 1 (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wrecscwrecs 7956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2729
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rab 3079  df-v 3411  df-un 3863  df-in 3865  df-ss 3875  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-xp 5530  df-cnv 5532  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-iota 6294  df-fv 6343  df-wrecs 7957
This theorem is referenced by:  csbrecsg  35025
  Copyright terms: Public domain W3C validator