MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq1 Structured version   Visualization version   GIF version

Theorem wrecseq1 8294
Description: Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq1 (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))

Proof of Theorem wrecseq1
StepHypRef Expression
1 eqid 2729 . 2 𝐴 = 𝐴
2 eqid 2729 . 2 𝐹 = 𝐹
3 wrecseq123 8292 . 2 ((𝑅 = 𝑆𝐴 = 𝐴𝐹 = 𝐹) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))
41, 2, 3mp3an23 1455 1 (𝑅 = 𝑆 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐴, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wrecscwrecs 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-frecs 8260  df-wrecs 8291
This theorem is referenced by:  csbrecsg  37316
  Copyright terms: Public domain W3C validator