Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrecsg Structured version   Visualization version   GIF version

Theorem csbrecsg 35426
Description: Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbrecsg (𝐴𝑉𝐴 / 𝑥recs(𝐹) = recs(𝐴 / 𝑥𝐹))

Proof of Theorem csbrecsg
StepHypRef Expression
1 csbwrecsg 8108 . . 3 (𝐴𝑉𝐴 / 𝑥wrecs( E , On, 𝐹) = wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
2 csbconstg 3847 . . . 4 (𝐴𝑉𝐴 / 𝑥 E = E )
3 wrecseq1 8105 . . . 4 (𝐴 / 𝑥 E = E → wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
42, 3syl 17 . . 3 (𝐴𝑉 → wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
5 csbconstg 3847 . . . 4 (𝐴𝑉𝐴 / 𝑥On = On)
6 wrecseq2 8106 . . . 4 (𝐴 / 𝑥On = On → wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
75, 6syl 17 . . 3 (𝐴𝑉 → wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
81, 4, 73eqtrd 2782 . 2 (𝐴𝑉𝐴 / 𝑥wrecs( E , On, 𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
9 df-recs 8173 . . 3 recs(𝐹) = wrecs( E , On, 𝐹)
109csbeq2i 3836 . 2 𝐴 / 𝑥recs(𝐹) = 𝐴 / 𝑥wrecs( E , On, 𝐹)
11 df-recs 8173 . 2 recs(𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹)
128, 10, 113eqtr4g 2804 1 (𝐴𝑉𝐴 / 𝑥recs(𝐹) = recs(𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  csb 3828   E cep 5485  Oncon0 6251  wrecscwrecs 8098  recscrecs 8172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-iota 6376  df-fv 6426  df-ov 7258  df-frecs 8068  df-wrecs 8099  df-recs 8173
This theorem is referenced by:  csbrdgg  35427
  Copyright terms: Public domain W3C validator