| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbrecsg | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.) |
| Ref | Expression |
|---|---|
| csbrecsg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbwrecsg 8299 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
| 2 | csbconstg 3883 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ E = E ) | |
| 3 | wrecseq1 8296 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌ E = E → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) |
| 5 | csbconstg 3883 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌On = On) | |
| 6 | wrecseq2 8297 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌On = On → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
| 8 | 1, 4, 7 | 3eqtrd 2769 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
| 9 | df-recs 8342 | . . 3 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
| 10 | 9 | csbeq2i 3872 | . 2 ⊢ ⦋𝐴 / 𝑥⦌recs(𝐹) = ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) |
| 11 | df-recs 8342 | . 2 ⊢ recs(⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹) | |
| 12 | 8, 10, 11 | 3eqtr4g 2790 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⦋csb 3864 E cep 5539 Oncon0 6334 wrecscwrecs 8292 recscrecs 8341 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-xp 5646 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-iota 6466 df-fv 6521 df-ov 7392 df-frecs 8262 df-wrecs 8293 df-recs 8342 |
| This theorem is referenced by: csbrdgg 37312 |
| Copyright terms: Public domain | W3C validator |