![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbrecsg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.) |
Ref | Expression |
---|---|
csbrecsg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbwrecsg 8320 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
2 | csbconstg 3908 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ E = E ) | |
3 | wrecseq1 8317 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌ E = E → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) |
5 | csbconstg 3908 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌On = On) | |
6 | wrecseq2 8318 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌On = On → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
8 | 1, 4, 7 | 3eqtrd 2771 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
9 | df-recs 8385 | . . 3 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
10 | 9 | csbeq2i 3897 | . 2 ⊢ ⦋𝐴 / 𝑥⦌recs(𝐹) = ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) |
11 | df-recs 8385 | . 2 ⊢ recs(⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹) | |
12 | 8, 10, 11 | 3eqtr4g 2792 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ⦋csb 3889 E cep 5575 Oncon0 6363 wrecscwrecs 8310 recscrecs 8384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-iota 6494 df-fv 6550 df-ov 7417 df-frecs 8280 df-wrecs 8311 df-recs 8385 |
This theorem is referenced by: csbrdgg 36744 |
Copyright terms: Public domain | W3C validator |