| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > csbrecsg | Structured version Visualization version GIF version | ||
| Description: Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.) |
| Ref | Expression |
|---|---|
| csbrecsg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbwrecsg 8320 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
| 2 | csbconstg 3893 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ E = E ) | |
| 3 | wrecseq1 8317 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌ E = E → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) |
| 5 | csbconstg 3893 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌On = On) | |
| 6 | wrecseq2 8318 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌On = On → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
| 8 | 1, 4, 7 | 3eqtrd 2774 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
| 9 | df-recs 8385 | . . 3 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
| 10 | 9 | csbeq2i 3882 | . 2 ⊢ ⦋𝐴 / 𝑥⦌recs(𝐹) = ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) |
| 11 | df-recs 8385 | . 2 ⊢ recs(⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹) | |
| 12 | 8, 10, 11 | 3eqtr4g 2795 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ⦋csb 3874 E cep 5552 Oncon0 6352 wrecscwrecs 8310 recscrecs 8384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fv 6539 df-ov 7408 df-frecs 8280 df-wrecs 8311 df-recs 8385 |
| This theorem is referenced by: csbrdgg 37347 |
| Copyright terms: Public domain | W3C validator |