Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrecsg Structured version   Visualization version   GIF version

Theorem csbrecsg 37316
Description: Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbrecsg (𝐴𝑉𝐴 / 𝑥recs(𝐹) = recs(𝐴 / 𝑥𝐹))

Proof of Theorem csbrecsg
StepHypRef Expression
1 csbwrecsg 8297 . . 3 (𝐴𝑉𝐴 / 𝑥wrecs( E , On, 𝐹) = wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
2 csbconstg 3881 . . . 4 (𝐴𝑉𝐴 / 𝑥 E = E )
3 wrecseq1 8294 . . . 4 (𝐴 / 𝑥 E = E → wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
42, 3syl 17 . . 3 (𝐴𝑉 → wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
5 csbconstg 3881 . . . 4 (𝐴𝑉𝐴 / 𝑥On = On)
6 wrecseq2 8295 . . . 4 (𝐴 / 𝑥On = On → wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
75, 6syl 17 . . 3 (𝐴𝑉 → wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
81, 4, 73eqtrd 2768 . 2 (𝐴𝑉𝐴 / 𝑥wrecs( E , On, 𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
9 df-recs 8340 . . 3 recs(𝐹) = wrecs( E , On, 𝐹)
109csbeq2i 3870 . 2 𝐴 / 𝑥recs(𝐹) = 𝐴 / 𝑥wrecs( E , On, 𝐹)
11 df-recs 8340 . 2 recs(𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹)
128, 10, 113eqtr4g 2789 1 (𝐴𝑉𝐴 / 𝑥recs(𝐹) = recs(𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  csb 3862   E cep 5537  Oncon0 6332  wrecscwrecs 8290  recscrecs 8339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-frecs 8260  df-wrecs 8291  df-recs 8340
This theorem is referenced by:  csbrdgg  37317
  Copyright terms: Public domain W3C validator