Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  csbrecsg Structured version   Visualization version   GIF version

Theorem csbrecsg 37311
Description: Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.)
Assertion
Ref Expression
csbrecsg (𝐴𝑉𝐴 / 𝑥recs(𝐹) = recs(𝐴 / 𝑥𝐹))

Proof of Theorem csbrecsg
StepHypRef Expression
1 csbwrecsg 8299 . . 3 (𝐴𝑉𝐴 / 𝑥wrecs( E , On, 𝐹) = wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
2 csbconstg 3883 . . . 4 (𝐴𝑉𝐴 / 𝑥 E = E )
3 wrecseq1 8296 . . . 4 (𝐴 / 𝑥 E = E → wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
42, 3syl 17 . . 3 (𝐴𝑉 → wrecs(𝐴 / 𝑥 E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹))
5 csbconstg 3883 . . . 4 (𝐴𝑉𝐴 / 𝑥On = On)
6 wrecseq2 8297 . . . 4 (𝐴 / 𝑥On = On → wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
75, 6syl 17 . . 3 (𝐴𝑉 → wrecs( E , 𝐴 / 𝑥On, 𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
81, 4, 73eqtrd 2769 . 2 (𝐴𝑉𝐴 / 𝑥wrecs( E , On, 𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹))
9 df-recs 8342 . . 3 recs(𝐹) = wrecs( E , On, 𝐹)
109csbeq2i 3872 . 2 𝐴 / 𝑥recs(𝐹) = 𝐴 / 𝑥wrecs( E , On, 𝐹)
11 df-recs 8342 . 2 recs(𝐴 / 𝑥𝐹) = wrecs( E , On, 𝐴 / 𝑥𝐹)
128, 10, 113eqtr4g 2790 1 (𝐴𝑉𝐴 / 𝑥recs(𝐹) = recs(𝐴 / 𝑥𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  csb 3864   E cep 5539  Oncon0 6334  wrecscwrecs 8292  recscrecs 8341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-xp 5646  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-iota 6466  df-fv 6521  df-ov 7392  df-frecs 8262  df-wrecs 8293  df-recs 8342
This theorem is referenced by:  csbrdgg  37312
  Copyright terms: Public domain W3C validator