Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > csbrecsg | Structured version Visualization version GIF version |
Description: Move class substitution in and out of recs. (Contributed by ML, 25-Oct-2020.) |
Ref | Expression |
---|---|
csbrecsg | ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbwrecsg 8137 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
2 | csbconstg 3851 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ E = E ) | |
3 | wrecseq1 8134 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌ E = E → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs(⦋𝐴 / 𝑥⦌ E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹)) |
5 | csbconstg 3851 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌On = On) | |
6 | wrecseq2 8135 | . . . 4 ⊢ (⦋𝐴 / 𝑥⦌On = On → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ∈ 𝑉 → wrecs( E , ⦋𝐴 / 𝑥⦌On, ⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
8 | 1, 4, 7 | 3eqtrd 2782 | . 2 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹)) |
9 | df-recs 8202 | . . 3 ⊢ recs(𝐹) = wrecs( E , On, 𝐹) | |
10 | 9 | csbeq2i 3840 | . 2 ⊢ ⦋𝐴 / 𝑥⦌recs(𝐹) = ⦋𝐴 / 𝑥⦌wrecs( E , On, 𝐹) |
11 | df-recs 8202 | . 2 ⊢ recs(⦋𝐴 / 𝑥⦌𝐹) = wrecs( E , On, ⦋𝐴 / 𝑥⦌𝐹) | |
12 | 8, 10, 11 | 3eqtr4g 2803 | 1 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌recs(𝐹) = recs(⦋𝐴 / 𝑥⦌𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⦋csb 3832 E cep 5494 Oncon0 6266 wrecscwrecs 8127 recscrecs 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fv 6441 df-ov 7278 df-frecs 8097 df-wrecs 8128 df-recs 8202 |
This theorem is referenced by: csbrdgg 35500 |
Copyright terms: Public domain | W3C validator |