MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrecsOLD Structured version   Visualization version   GIF version

Theorem nfwrecsOLD 8341
Description: Obsolete version of nfwrecs 8340 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 9-Jun-2018.)
Hypotheses
Ref Expression
nfwrecsOLD.1 𝑥𝑅
nfwrecsOLD.2 𝑥𝐴
nfwrecsOLD.3 𝑥𝐹
Assertion
Ref Expression
nfwrecsOLD 𝑥wrecs(𝑅, 𝐴, 𝐹)

Proof of Theorem nfwrecsOLD
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfwrecsOLD 8337 . 2 wrecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2 nfv 1912 . . . . . 6 𝑥 𝑓 Fn 𝑦
3 nfcv 2903 . . . . . . . 8 𝑥𝑦
4 nfwrecsOLD.2 . . . . . . . 8 𝑥𝐴
53, 4nfss 3988 . . . . . . 7 𝑥 𝑦𝐴
6 nfwrecsOLD.1 . . . . . . . . . 10 𝑥𝑅
7 nfcv 2903 . . . . . . . . . 10 𝑥𝑧
86, 4, 7nfpred 6328 . . . . . . . . 9 𝑥Pred(𝑅, 𝐴, 𝑧)
98, 3nfss 3988 . . . . . . . 8 𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
103, 9nfralw 3309 . . . . . . 7 𝑥𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
115, 10nfan 1897 . . . . . 6 𝑥(𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦)
12 nfwrecsOLD.3 . . . . . . . . 9 𝑥𝐹
13 nfcv 2903 . . . . . . . . . 10 𝑥𝑓
1413, 8nfres 6002 . . . . . . . . 9 𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))
1512, 14nffv 6917 . . . . . . . 8 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
1615nfeq2 2921 . . . . . . 7 𝑥(𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
173, 16nfralw 3309 . . . . . 6 𝑥𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
182, 11, 17nf3an 1899 . . . . 5 𝑥(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
1918nfex 2323 . . . 4 𝑥𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
2019nfab 2909 . . 3 𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2120nfuni 4919 . 2 𝑥 {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
221, 21nfcxfr 2901 1 𝑥wrecs(𝑅, 𝐴, 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1537  wex 1776  {cab 2712  wnfc 2888  wral 3059  wss 3963   cuni 4912  cres 5691  Predcpred 6322   Fn wfn 6558  cfv 6563  wrecscwrecs 8335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-ov 7434  df-2nd 8014  df-frecs 8305  df-wrecs 8336
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator