| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfwrecsOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of nfwrecs 8315 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 9-Jun-2018.) |
| Ref | Expression |
|---|---|
| nfwrecsOLD.1 | ⊢ Ⅎ𝑥𝑅 |
| nfwrecsOLD.2 | ⊢ Ⅎ𝑥𝐴 |
| nfwrecsOLD.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfwrecsOLD | ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfwrecsOLD 8312 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} | |
| 2 | nfv 1914 | . . . . . 6 ⊢ Ⅎ𝑥 𝑓 Fn 𝑦 | |
| 3 | nfcv 2898 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
| 4 | nfwrecsOLD.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 3, 4 | nfss 3951 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
| 6 | nfwrecsOLD.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑅 | |
| 7 | nfcv 2898 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
| 8 | 6, 4, 7 | nfpred 6295 | . . . . . . . . 9 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) |
| 9 | 8, 3 | nfss 3951 | . . . . . . . 8 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
| 10 | 3, 9 | nfralw 3291 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
| 11 | 5, 10 | nfan 1899 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) |
| 12 | nfwrecsOLD.3 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
| 13 | nfcv 2898 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑓 | |
| 14 | 13, 8 | nfres 5968 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)) |
| 15 | 12, 14 | nffv 6886 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 16 | 15 | nfeq2 2916 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 17 | 3, 16 | nfralw 3291 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 18 | 2, 11, 17 | nf3an 1901 | . . . . 5 ⊢ Ⅎ𝑥(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 19 | 18 | nfex 2324 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 20 | 19 | nfab 2904 | . . 3 ⊢ Ⅎ𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
| 21 | 20 | nfuni 4890 | . 2 ⊢ Ⅎ𝑥∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
| 22 | 1, 21 | nfcxfr 2896 | 1 ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 {cab 2713 Ⅎwnfc 2883 ∀wral 3051 ⊆ wss 3926 ∪ cuni 4883 ↾ cres 5656 Predcpred 6289 Fn wfn 6526 ‘cfv 6531 wrecscwrecs 8310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |