| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfwrecsOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of nfwrecs 8310 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 9-Jun-2018.) |
| Ref | Expression |
|---|---|
| nfwrecsOLD.1 | ⊢ Ⅎ𝑥𝑅 |
| nfwrecsOLD.2 | ⊢ Ⅎ𝑥𝐴 |
| nfwrecsOLD.3 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nfwrecsOLD | ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfwrecsOLD 8307 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} | |
| 2 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 𝑓 Fn 𝑦 | |
| 3 | nfcv 2897 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
| 4 | nfwrecsOLD.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 5 | 3, 4 | nfss 3949 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
| 6 | nfwrecsOLD.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑅 | |
| 7 | nfcv 2897 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
| 8 | 6, 4, 7 | nfpred 6293 | . . . . . . . . 9 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) |
| 9 | 8, 3 | nfss 3949 | . . . . . . . 8 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
| 10 | 3, 9 | nfralw 3289 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
| 11 | 5, 10 | nfan 1898 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) |
| 12 | nfwrecsOLD.3 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
| 13 | nfcv 2897 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑓 | |
| 14 | 13, 8 | nfres 5966 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)) |
| 15 | 12, 14 | nffv 6883 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 16 | 15 | nfeq2 2915 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 17 | 3, 16 | nfralw 3289 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
| 18 | 2, 11, 17 | nf3an 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 19 | 18 | nfex 2323 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
| 20 | 19 | nfab 2903 | . . 3 ⊢ Ⅎ𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
| 21 | 20 | nfuni 4888 | . 2 ⊢ Ⅎ𝑥∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
| 22 | 1, 21 | nfcxfr 2895 | 1 ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∃wex 1778 {cab 2712 Ⅎwnfc 2882 ∀wral 3050 ⊆ wss 3924 ∪ cuni 4881 ↾ cres 5654 Predcpred 6287 Fn wfn 6523 ‘cfv 6528 wrecscwrecs 8305 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-fo 6534 df-fv 6536 df-ov 7403 df-2nd 7984 df-frecs 8275 df-wrecs 8306 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |