MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrecsOLD Structured version   Visualization version   GIF version

Theorem nfwrecsOLD 8303
Description: Obsolete proof of nfwrecs 8302 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 9-Jun-2018.)
Hypotheses
Ref Expression
nfwrecsOLD.1 𝑥𝑅
nfwrecsOLD.2 𝑥𝐴
nfwrecsOLD.3 𝑥𝐹
Assertion
Ref Expression
nfwrecsOLD 𝑥wrecs(𝑅, 𝐴, 𝐹)

Proof of Theorem nfwrecsOLD
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfwrecsOLD 8299 . 2 wrecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2 nfv 1909 . . . . . 6 𝑥 𝑓 Fn 𝑦
3 nfcv 2897 . . . . . . . 8 𝑥𝑦
4 nfwrecsOLD.2 . . . . . . . 8 𝑥𝐴
53, 4nfss 3969 . . . . . . 7 𝑥 𝑦𝐴
6 nfwrecsOLD.1 . . . . . . . . . 10 𝑥𝑅
7 nfcv 2897 . . . . . . . . . 10 𝑥𝑧
86, 4, 7nfpred 6299 . . . . . . . . 9 𝑥Pred(𝑅, 𝐴, 𝑧)
98, 3nfss 3969 . . . . . . . 8 𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
103, 9nfralw 3302 . . . . . . 7 𝑥𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
115, 10nfan 1894 . . . . . 6 𝑥(𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦)
12 nfwrecsOLD.3 . . . . . . . . 9 𝑥𝐹
13 nfcv 2897 . . . . . . . . . 10 𝑥𝑓
1413, 8nfres 5977 . . . . . . . . 9 𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))
1512, 14nffv 6895 . . . . . . . 8 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
1615nfeq2 2914 . . . . . . 7 𝑥(𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
173, 16nfralw 3302 . . . . . 6 𝑥𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
182, 11, 17nf3an 1896 . . . . 5 𝑥(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
1918nfex 2311 . . . 4 𝑥𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
2019nfab 2903 . . 3 𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2120nfuni 4909 . 2 𝑥 {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
221, 21nfcxfr 2895 1 𝑥wrecs(𝑅, 𝐴, 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1084   = wceq 1533  wex 1773  {cab 2703  wnfc 2877  wral 3055  wss 3943   cuni 4902  cres 5671  Predcpred 6293   Fn wfn 6532  cfv 6537  wrecscwrecs 8297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-fo 6543  df-fv 6545  df-ov 7408  df-2nd 7975  df-frecs 8267  df-wrecs 8298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator