MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfwrecsOLD Structured version   Visualization version   GIF version

Theorem nfwrecsOLD 8133
Description: Obsolete proof of nfwrecs 8132 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 9-Jun-2018.)
Hypotheses
Ref Expression
nfwrecsOLD.1 𝑥𝑅
nfwrecsOLD.2 𝑥𝐴
nfwrecsOLD.3 𝑥𝐹
Assertion
Ref Expression
nfwrecsOLD 𝑥wrecs(𝑅, 𝐴, 𝐹)

Proof of Theorem nfwrecsOLD
Dummy variables 𝑓 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfwrecsOLD 8129 . 2 wrecs(𝑅, 𝐴, 𝐹) = {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2 nfv 1917 . . . . . 6 𝑥 𝑓 Fn 𝑦
3 nfcv 2907 . . . . . . . 8 𝑥𝑦
4 nfwrecsOLD.2 . . . . . . . 8 𝑥𝐴
53, 4nfss 3913 . . . . . . 7 𝑥 𝑦𝐴
6 nfwrecsOLD.1 . . . . . . . . . 10 𝑥𝑅
7 nfcv 2907 . . . . . . . . . 10 𝑥𝑧
86, 4, 7nfpred 6207 . . . . . . . . 9 𝑥Pred(𝑅, 𝐴, 𝑧)
98, 3nfss 3913 . . . . . . . 8 𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
103, 9nfralw 3151 . . . . . . 7 𝑥𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦
115, 10nfan 1902 . . . . . 6 𝑥(𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦)
12 nfwrecsOLD.3 . . . . . . . . 9 𝑥𝐹
13 nfcv 2907 . . . . . . . . . 10 𝑥𝑓
1413, 8nfres 5893 . . . . . . . . 9 𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))
1512, 14nffv 6784 . . . . . . . 8 𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
1615nfeq2 2924 . . . . . . 7 𝑥(𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
173, 16nfralw 3151 . . . . . 6 𝑥𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))
182, 11, 17nf3an 1904 . . . . 5 𝑥(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
1918nfex 2318 . . . 4 𝑥𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))
2019nfab 2913 . . 3 𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
2120nfuni 4846 . 2 𝑥 {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦𝐴 ∧ ∀𝑧𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧𝑦 (𝑓𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))}
221, 21nfcxfr 2905 1 𝑥wrecs(𝑅, 𝐴, 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1086   = wceq 1539  wex 1782  {cab 2715  wnfc 2887  wral 3064  wss 3887   cuni 4839  cres 5591  Predcpred 6201   Fn wfn 6428  cfv 6433  wrecscwrecs 8127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator