Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfwrecsOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nfwrecs 8132 as of 17-Nov-2024. (New usage is discouraged.) (Proof modification is discouraged.) (Contributed by Scott Fenton, 9-Jun-2018.) |
Ref | Expression |
---|---|
nfwrecsOLD.1 | ⊢ Ⅎ𝑥𝑅 |
nfwrecsOLD.2 | ⊢ Ⅎ𝑥𝐴 |
nfwrecsOLD.3 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfwrecsOLD | ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfwrecsOLD 8129 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = ∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} | |
2 | nfv 1917 | . . . . . 6 ⊢ Ⅎ𝑥 𝑓 Fn 𝑦 | |
3 | nfcv 2907 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑦 | |
4 | nfwrecsOLD.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
5 | 3, 4 | nfss 3913 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝐴 |
6 | nfwrecsOLD.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑅 | |
7 | nfcv 2907 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
8 | 6, 4, 7 | nfpred 6207 | . . . . . . . . 9 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) |
9 | 8, 3 | nfss 3913 | . . . . . . . 8 ⊢ Ⅎ𝑥Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
10 | 3, 9 | nfralw 3151 | . . . . . . 7 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦 |
11 | 5, 10 | nfan 1902 | . . . . . 6 ⊢ Ⅎ𝑥(𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) |
12 | nfwrecsOLD.3 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐹 | |
13 | nfcv 2907 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑓 | |
14 | 13, 8 | nfres 5893 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)) |
15 | 12, 14 | nffv 6784 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
16 | 15 | nfeq2 2924 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
17 | 3, 16 | nfralw 3151 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))) |
18 | 2, 11, 17 | nf3an 1904 | . . . . 5 ⊢ Ⅎ𝑥(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
19 | 18 | nfex 2318 | . . . 4 ⊢ Ⅎ𝑥∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧)))) |
20 | 19 | nfab 2913 | . . 3 ⊢ Ⅎ𝑥{𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
21 | 20 | nfuni 4846 | . 2 ⊢ Ⅎ𝑥∪ {𝑓 ∣ ∃𝑦(𝑓 Fn 𝑦 ∧ (𝑦 ⊆ 𝐴 ∧ ∀𝑧 ∈ 𝑦 Pred(𝑅, 𝐴, 𝑧) ⊆ 𝑦) ∧ ∀𝑧 ∈ 𝑦 (𝑓‘𝑧) = (𝐹‘(𝑓 ↾ Pred(𝑅, 𝐴, 𝑧))))} |
22 | 1, 21 | nfcxfr 2905 | 1 ⊢ Ⅎ𝑥wrecs(𝑅, 𝐴, 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∃wex 1782 {cab 2715 Ⅎwnfc 2887 ∀wral 3064 ⊆ wss 3887 ∪ cuni 4839 ↾ cres 5591 Predcpred 6201 Fn wfn 6428 ‘cfv 6433 wrecscwrecs 8127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fo 6439 df-fv 6441 df-ov 7278 df-2nd 7832 df-frecs 8097 df-wrecs 8128 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |