MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq2 Structured version   Visualization version   GIF version

Theorem wrecseq2 8318
Description: Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq2 (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹))

Proof of Theorem wrecseq2
StepHypRef Expression
1 eqid 2735 . 2 𝑅 = 𝑅
2 eqid 2735 . 2 𝐹 = 𝐹
3 wrecseq123 8313 . 2 ((𝑅 = 𝑅𝐴 = 𝐵𝐹 = 𝐹) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹))
41, 2, 3mp3an13 1454 1 (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wrecscwrecs 8310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-iota 6484  df-fv 6539  df-ov 7408  df-frecs 8280  df-wrecs 8311
This theorem is referenced by:  csbrecsg  37346
  Copyright terms: Public domain W3C validator