MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq2 Structured version   Visualization version   GIF version

Theorem wrecseq2 8249
Description: Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.)
Assertion
Ref Expression
wrecseq2 (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹))

Proof of Theorem wrecseq2
StepHypRef Expression
1 eqid 2729 . 2 𝑅 = 𝑅
2 eqid 2729 . 2 𝐹 = 𝐹
3 wrecseq123 8246 . 2 ((𝑅 = 𝑅𝐴 = 𝐵𝐹 = 𝐹) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹))
41, 2, 3mp3an13 1454 1 (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wrecscwrecs 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-iota 6438  df-fv 6490  df-ov 7352  df-frecs 8214  df-wrecs 8245
This theorem is referenced by:  csbrecsg  37306
  Copyright terms: Public domain W3C validator