Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrecseq2 | Structured version Visualization version GIF version |
Description: Equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) |
Ref | Expression |
---|---|
wrecseq2 | ⊢ (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝑅 = 𝑅 | |
2 | eqid 2738 | . 2 ⊢ 𝐹 = 𝐹 | |
3 | wrecseq123 8101 | . 2 ⊢ ((𝑅 = 𝑅 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐹) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹)) | |
4 | 1, 2, 3 | mp3an13 1450 | 1 ⊢ (𝐴 = 𝐵 → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑅, 𝐵, 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 wrecscwrecs 8098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-iota 6376 df-fv 6426 df-ov 7258 df-frecs 8068 df-wrecs 8099 |
This theorem is referenced by: csbrecsg 35426 |
Copyright terms: Public domain | W3C validator |