| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrecseq123 | Structured version Visualization version GIF version | ||
| Description: General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| Ref | Expression |
|---|---|
| wrecseq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1 5824 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd )) | |
| 2 | frecseq123 8264 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd )) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd ))) | |
| 3 | 1, 2 | syl3an3 1165 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd ))) |
| 4 | df-wrecs 8294 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
| 5 | df-wrecs 8294 | . 2 ⊢ wrecs(𝑆, 𝐵, 𝐺) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd )) | |
| 6 | 3, 4, 5 | 3eqtr4g 2790 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∘ ccom 5645 2nd c2nd 7970 frecscfrecs 8262 wrecscwrecs 8293 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-iota 6467 df-fv 6522 df-ov 7393 df-frecs 8263 df-wrecs 8294 |
| This theorem is referenced by: wrecseq1 8297 wrecseq2 8298 wrecseq3 8299 |
| Copyright terms: Public domain | W3C validator |