![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wrecseq123 | Structured version Visualization version GIF version |
Description: General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
Ref | Expression |
---|---|
wrecseq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1 5871 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd )) | |
2 | frecseq123 8306 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd )) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd ))) | |
3 | 1, 2 | syl3an3 1164 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd ))) |
4 | df-wrecs 8336 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
5 | df-wrecs 8336 | . 2 ⊢ wrecs(𝑆, 𝐵, 𝐺) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd )) | |
6 | 3, 4, 5 | 3eqtr4g 2800 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1537 ∘ ccom 5693 2nd c2nd 8012 frecscfrecs 8304 wrecscwrecs 8335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-iota 6516 df-fv 6571 df-ov 7434 df-frecs 8305 df-wrecs 8336 |
This theorem is referenced by: wrecseq1 8342 wrecseq2 8343 wrecseq3 8344 |
Copyright terms: Public domain | W3C validator |