Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wrecseq123 | Structured version Visualization version GIF version |
Description: General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
Ref | Expression |
---|---|
wrecseq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1 5766 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd )) | |
2 | frecseq123 8098 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd )) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd ))) | |
3 | 1, 2 | syl3an3 1164 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd ))) |
4 | df-wrecs 8128 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
5 | df-wrecs 8128 | . 2 ⊢ wrecs(𝑆, 𝐵, 𝐺) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd )) | |
6 | 3, 4, 5 | 3eqtr4g 2803 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∘ ccom 5593 2nd c2nd 7830 frecscfrecs 8096 wrecscwrecs 8127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-iota 6391 df-fv 6441 df-ov 7278 df-frecs 8097 df-wrecs 8128 |
This theorem is referenced by: wrecseq1 8134 wrecseq2 8135 wrecseq3 8136 |
Copyright terms: Public domain | W3C validator |