| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wrecseq123 | Structured version Visualization version GIF version | ||
| Description: General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.) |
| Ref | Expression |
|---|---|
| wrecseq123 | ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coeq1 5868 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd )) | |
| 2 | frecseq123 8307 | . . 3 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd )) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd ))) | |
| 3 | 1, 2 | syl3an3 1166 | . 2 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd ))) |
| 4 | df-wrecs 8337 | . 2 ⊢ wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) | |
| 5 | df-wrecs 8337 | . 2 ⊢ wrecs(𝑆, 𝐵, 𝐺) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd )) | |
| 6 | 3, 4, 5 | 3eqtr4g 2802 | 1 ⊢ ((𝑅 = 𝑆 ∧ 𝐴 = 𝐵 ∧ 𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∘ ccom 5689 2nd c2nd 8013 frecscfrecs 8305 wrecscwrecs 8336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-iota 6514 df-fv 6569 df-ov 7434 df-frecs 8306 df-wrecs 8337 |
| This theorem is referenced by: wrecseq1 8343 wrecseq2 8344 wrecseq3 8345 |
| Copyright terms: Public domain | W3C validator |