MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wrecseq123 Structured version   Visualization version   GIF version

Theorem wrecseq123 8292
Description: General equality theorem for the well-ordered recursive function generator. (Contributed by Scott Fenton, 7-Jun-2018.) (Proof shortened by Scott Fenton, 17-Nov-2024.)
Assertion
Ref Expression
wrecseq123 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺))

Proof of Theorem wrecseq123
StepHypRef Expression
1 coeq1 5821 . . 3 (𝐹 = 𝐺 → (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd ))
2 frecseq123 8261 . . 3 ((𝑅 = 𝑆𝐴 = 𝐵 ∧ (𝐹 ∘ 2nd ) = (𝐺 ∘ 2nd )) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd )))
31, 2syl3an3 1165 . 2 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → frecs(𝑅, 𝐴, (𝐹 ∘ 2nd )) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd )))
4 df-wrecs 8291 . 2 wrecs(𝑅, 𝐴, 𝐹) = frecs(𝑅, 𝐴, (𝐹 ∘ 2nd ))
5 df-wrecs 8291 . 2 wrecs(𝑆, 𝐵, 𝐺) = frecs(𝑆, 𝐵, (𝐺 ∘ 2nd ))
63, 4, 53eqtr4g 2789 1 ((𝑅 = 𝑆𝐴 = 𝐵𝐹 = 𝐺) → wrecs(𝑅, 𝐴, 𝐹) = wrecs(𝑆, 𝐵, 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  ccom 5642  2nd c2nd 7967  frecscfrecs 8259  wrecscwrecs 8290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fv 6519  df-ov 7390  df-frecs 8260  df-wrecs 8291
This theorem is referenced by:  wrecseq1  8294  wrecseq2  8295  wrecseq3  8296
  Copyright terms: Public domain W3C validator