Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpcoid | Structured version Visualization version GIF version |
Description: Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
xpcoid | ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | co01 6154 | . . 3 ⊢ (∅ ∘ ∅) = ∅ | |
2 | id 22 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
3 | 2 | sqxpeqd 5612 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × ∅)) |
4 | 0xp 5675 | . . . . 5 ⊢ (∅ × ∅) = ∅ | |
5 | 3, 4 | eqtrdi 2795 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
6 | 5, 5 | coeq12d 5762 | . . 3 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (∅ ∘ ∅)) |
7 | 1, 6, 5 | 3eqtr4a 2805 | . 2 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
8 | xpco 6181 | . 2 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) | |
9 | 7, 8 | pm2.61ine 3027 | 1 ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∅c0 4253 × cxp 5578 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 |
This theorem is referenced by: utop2nei 23310 |
Copyright terms: Public domain | W3C validator |