MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcoid Structured version   Visualization version   GIF version

Theorem xpcoid 6321
Description: Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
xpcoid ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)

Proof of Theorem xpcoid
StepHypRef Expression
1 co01 6292 . . 3 (∅ ∘ ∅) = ∅
2 id 22 . . . . . 6 (𝐴 = ∅ → 𝐴 = ∅)
32sqxpeqd 5732 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × ∅))
4 0xp 5798 . . . . 5 (∅ × ∅) = ∅
53, 4eqtrdi 2796 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
65, 5coeq12d 5889 . . 3 (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (∅ ∘ ∅))
71, 6, 53eqtr4a 2806 . 2 (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
8 xpco 6320 . 2 (𝐴 ≠ ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
97, 8pm2.61ine 3031 1 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  c0 4352   × cxp 5698  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709
This theorem is referenced by:  utop2nei  24280
  Copyright terms: Public domain W3C validator