| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpcoid | Structured version Visualization version GIF version | ||
| Description: Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
| Ref | Expression |
|---|---|
| xpcoid | ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | co01 6209 | . . 3 ⊢ (∅ ∘ ∅) = ∅ | |
| 2 | id 22 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 3 | 2 | sqxpeqd 5648 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × ∅)) |
| 4 | 0xp 5715 | . . . . 5 ⊢ (∅ × ∅) = ∅ | |
| 5 | 3, 4 | eqtrdi 2782 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
| 6 | 5, 5 | coeq12d 5804 | . . 3 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (∅ ∘ ∅)) |
| 7 | 1, 6, 5 | 3eqtr4a 2792 | . 2 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
| 8 | xpco 6236 | . 2 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) | |
| 9 | 7, 8 | pm2.61ine 3011 | 1 ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∅c0 4283 × cxp 5614 ∘ ccom 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 |
| This theorem is referenced by: utop2nei 24163 |
| Copyright terms: Public domain | W3C validator |