MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpcoid Structured version   Visualization version   GIF version

Theorem xpcoid 6237
Description: Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Assertion
Ref Expression
xpcoid ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)

Proof of Theorem xpcoid
StepHypRef Expression
1 co01 6209 . . 3 (∅ ∘ ∅) = ∅
2 id 22 . . . . . 6 (𝐴 = ∅ → 𝐴 = ∅)
32sqxpeqd 5648 . . . . 5 (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × ∅))
4 0xp 5715 . . . . 5 (∅ × ∅) = ∅
53, 4eqtrdi 2782 . . . 4 (𝐴 = ∅ → (𝐴 × 𝐴) = ∅)
65, 5coeq12d 5804 . . 3 (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (∅ ∘ ∅))
71, 6, 53eqtr4a 2792 . 2 (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
8 xpco 6236 . 2 (𝐴 ≠ ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴))
97, 8pm2.61ine 3011 1 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  c0 4283   × cxp 5614  ccom 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625
This theorem is referenced by:  utop2nei  24163
  Copyright terms: Public domain W3C validator