![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpcoid | Structured version Visualization version GIF version |
Description: Composition of two Cartesian squares. (Contributed by Thierry Arnoux, 14-Jan-2018.) |
Ref | Expression |
---|---|
xpcoid | ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | co01 6261 | . . 3 ⊢ (∅ ∘ ∅) = ∅ | |
2 | id 22 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
3 | 2 | sqxpeqd 5709 | . . . . 5 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = (∅ × ∅)) |
4 | 0xp 5775 | . . . . 5 ⊢ (∅ × ∅) = ∅ | |
5 | 3, 4 | eqtrdi 2789 | . . . 4 ⊢ (𝐴 = ∅ → (𝐴 × 𝐴) = ∅) |
6 | 5, 5 | coeq12d 5865 | . . 3 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (∅ ∘ ∅)) |
7 | 1, 6, 5 | 3eqtr4a 2799 | . 2 ⊢ (𝐴 = ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) |
8 | xpco 6289 | . 2 ⊢ (𝐴 ≠ ∅ → ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴)) | |
9 | 7, 8 | pm2.61ine 3026 | 1 ⊢ ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) = (𝐴 × 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∅c0 4323 × cxp 5675 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 |
This theorem is referenced by: utop2nei 23755 |
Copyright terms: Public domain | W3C validator |