MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  utop2nei Structured version   Visualization version   GIF version

Theorem utop2nei 22333
Description: For any symmetrical entourage 𝑉 and any relation 𝑀, build a neighborhood of 𝑀. First part of proposition 2 of [BourbakiTop1] p. II.4. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
utoptop.1 𝐽 = (unifTop‘𝑈)
Assertion
Ref Expression
utop2nei ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀))

Proof of Theorem utop2nei
Dummy variables 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 utoptop.1 . . . . . . . 8 𝐽 = (unifTop‘𝑈)
2 utoptop 22317 . . . . . . . 8 (𝑈 ∈ (UnifOn‘𝑋) → (unifTop‘𝑈) ∈ Top)
31, 2syl5eqel 2848 . . . . . . 7 (𝑈 ∈ (UnifOn‘𝑋) → 𝐽 ∈ Top)
4 txtop 21652 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → (𝐽 ×t 𝐽) ∈ Top)
53, 3, 4syl2anc 579 . . . . . 6 (𝑈 ∈ (UnifOn‘𝑋) → (𝐽 ×t 𝐽) ∈ Top)
653ad2ant1 1163 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝐽 ×t 𝐽) ∈ Top)
76adantr 472 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 = ∅) → (𝐽 ×t 𝐽) ∈ Top)
8 0nei 21212 . . . 4 ((𝐽 ×t 𝐽) ∈ Top → ∅ ∈ ((nei‘(𝐽 ×t 𝐽))‘∅))
97, 8syl 17 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 = ∅) → ∅ ∈ ((nei‘(𝐽 ×t 𝐽))‘∅))
10 coeq1 5448 . . . . . . 7 (𝑀 = ∅ → (𝑀𝑉) = (∅ ∘ 𝑉))
11 co01 5836 . . . . . . 7 (∅ ∘ 𝑉) = ∅
1210, 11syl6eq 2815 . . . . . 6 (𝑀 = ∅ → (𝑀𝑉) = ∅)
1312coeq2d 5453 . . . . 5 (𝑀 = ∅ → (𝑉 ∘ (𝑀𝑉)) = (𝑉 ∘ ∅))
14 co02 5835 . . . . 5 (𝑉 ∘ ∅) = ∅
1513, 14syl6eq 2815 . . . 4 (𝑀 = ∅ → (𝑉 ∘ (𝑀𝑉)) = ∅)
1615adantl 473 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 = ∅) → (𝑉 ∘ (𝑀𝑉)) = ∅)
17 simpr 477 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 = ∅) → 𝑀 = ∅)
1817fveq2d 6379 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 = ∅) → ((nei‘(𝐽 ×t 𝐽))‘𝑀) = ((nei‘(𝐽 ×t 𝐽))‘∅))
199, 16, 183eltr4d 2859 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 = ∅) → (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀))
206adantr 472 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → (𝐽 ×t 𝐽) ∈ Top)
21 simpl1 1242 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → 𝑈 ∈ (UnifOn‘𝑋))
2221, 3syl 17 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → 𝐽 ∈ Top)
23 simpl2l 1297 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → 𝑉𝑈)
24 simp3 1168 . . . . . . . . . . . 12 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → 𝑀 ⊆ (𝑋 × 𝑋))
2524sselda 3761 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → 𝑟 ∈ (𝑋 × 𝑋))
26 xp1st 7398 . . . . . . . . . . 11 (𝑟 ∈ (𝑋 × 𝑋) → (1st𝑟) ∈ 𝑋)
2725, 26syl 17 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → (1st𝑟) ∈ 𝑋)
281utopsnnei 22332 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (1st𝑟) ∈ 𝑋) → (𝑉 “ {(1st𝑟)}) ∈ ((nei‘𝐽)‘{(1st𝑟)}))
2921, 23, 27, 28syl3anc 1490 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → (𝑉 “ {(1st𝑟)}) ∈ ((nei‘𝐽)‘{(1st𝑟)}))
30 xp2nd 7399 . . . . . . . . . . 11 (𝑟 ∈ (𝑋 × 𝑋) → (2nd𝑟) ∈ 𝑋)
3125, 30syl 17 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → (2nd𝑟) ∈ 𝑋)
321utopsnnei 22332 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈 ∧ (2nd𝑟) ∈ 𝑋) → (𝑉 “ {(2nd𝑟)}) ∈ ((nei‘𝐽)‘{(2nd𝑟)}))
3321, 23, 31, 32syl3anc 1490 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → (𝑉 “ {(2nd𝑟)}) ∈ ((nei‘𝐽)‘{(2nd𝑟)}))
34 eqid 2765 . . . . . . . . . 10 𝐽 = 𝐽
3534, 34neitx 21690 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐽 ∈ Top) ∧ ((𝑉 “ {(1st𝑟)}) ∈ ((nei‘𝐽)‘{(1st𝑟)}) ∧ (𝑉 “ {(2nd𝑟)}) ∈ ((nei‘𝐽)‘{(2nd𝑟)}))) → ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑟)} × {(2nd𝑟)})))
3622, 22, 29, 33, 35syl22anc 867 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑟)} × {(2nd𝑟)})))
37 fvex 6388 . . . . . . . . . 10 (1st𝑟) ∈ V
38 fvex 6388 . . . . . . . . . 10 (2nd𝑟) ∈ V
3937, 38xpsn 6598 . . . . . . . . 9 ({(1st𝑟)} × {(2nd𝑟)}) = {⟨(1st𝑟), (2nd𝑟)⟩}
4039fveq2i 6378 . . . . . . . 8 ((nei‘(𝐽 ×t 𝐽))‘({(1st𝑟)} × {(2nd𝑟)})) = ((nei‘(𝐽 ×t 𝐽))‘{⟨(1st𝑟), (2nd𝑟)⟩})
4136, 40syl6eleq 2854 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{⟨(1st𝑟), (2nd𝑟)⟩}))
4224adantr 472 . . . . . . . . . . 11 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → 𝑀 ⊆ (𝑋 × 𝑋))
43 xpss 5293 . . . . . . . . . . . . 13 (𝑋 × 𝑋) ⊆ (V × V)
44 sstr 3769 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ⊆ (V × V)) → 𝑀 ⊆ (V × V))
4543, 44mpan2 682 . . . . . . . . . . . 12 (𝑀 ⊆ (𝑋 × 𝑋) → 𝑀 ⊆ (V × V))
46 df-rel 5284 . . . . . . . . . . . 12 (Rel 𝑀𝑀 ⊆ (V × V))
4745, 46sylibr 225 . . . . . . . . . . 11 (𝑀 ⊆ (𝑋 × 𝑋) → Rel 𝑀)
4842, 47syl 17 . . . . . . . . . 10 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → Rel 𝑀)
49 1st2nd 7414 . . . . . . . . . 10 ((Rel 𝑀𝑟𝑀) → 𝑟 = ⟨(1st𝑟), (2nd𝑟)⟩)
5048, 49sylancom 582 . . . . . . . . 9 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → 𝑟 = ⟨(1st𝑟), (2nd𝑟)⟩)
5150sneqd 4346 . . . . . . . 8 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → {𝑟} = {⟨(1st𝑟), (2nd𝑟)⟩})
5251fveq2d 6379 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → ((nei‘(𝐽 ×t 𝐽))‘{𝑟}) = ((nei‘(𝐽 ×t 𝐽))‘{⟨(1st𝑟), (2nd𝑟)⟩}))
5341, 52eleqtrrd 2847 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑟}))
54 relxp 5295 . . . . . . . . . . 11 Rel ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))
5554a1i 11 . . . . . . . . . 10 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → Rel ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})))
56 1st2nd 7414 . . . . . . . . . 10 ((Rel ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
5755, 56sylancom 582 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → 𝑧 = ⟨(1st𝑧), (2nd𝑧)⟩)
58 simpll2 1271 . . . . . . . . . . . . 13 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → (𝑉𝑈𝑉 = 𝑉))
5958simprd 489 . . . . . . . . . . . 12 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → 𝑉 = 𝑉)
60 simpll1 1269 . . . . . . . . . . . . . 14 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → 𝑈 ∈ (UnifOn‘𝑋))
6158simpld 488 . . . . . . . . . . . . . 14 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → 𝑉𝑈)
62 ustrel 22294 . . . . . . . . . . . . . 14 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → Rel 𝑉)
6360, 61, 62syl2anc 579 . . . . . . . . . . . . 13 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → Rel 𝑉)
64 xp1st 7398 . . . . . . . . . . . . . 14 (𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) → (1st𝑧) ∈ (𝑉 “ {(1st𝑟)}))
6564adantl 473 . . . . . . . . . . . . 13 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → (1st𝑧) ∈ (𝑉 “ {(1st𝑟)}))
66 elrelimasn 5671 . . . . . . . . . . . . . 14 (Rel 𝑉 → ((1st𝑧) ∈ (𝑉 “ {(1st𝑟)}) ↔ (1st𝑟)𝑉(1st𝑧)))
6766biimpa 468 . . . . . . . . . . . . 13 ((Rel 𝑉 ∧ (1st𝑧) ∈ (𝑉 “ {(1st𝑟)})) → (1st𝑟)𝑉(1st𝑧))
6863, 65, 67syl2anc 579 . . . . . . . . . . . 12 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → (1st𝑟)𝑉(1st𝑧))
69 fvex 6388 . . . . . . . . . . . . . . 15 (1st𝑧) ∈ V
7037, 69brcnv 5473 . . . . . . . . . . . . . 14 ((1st𝑟)𝑉(1st𝑧) ↔ (1st𝑧)𝑉(1st𝑟))
71 breq 4811 . . . . . . . . . . . . . 14 (𝑉 = 𝑉 → ((1st𝑟)𝑉(1st𝑧) ↔ (1st𝑟)𝑉(1st𝑧)))
7270, 71syl5bbr 276 . . . . . . . . . . . . 13 (𝑉 = 𝑉 → ((1st𝑧)𝑉(1st𝑟) ↔ (1st𝑟)𝑉(1st𝑧)))
7372biimpar 469 . . . . . . . . . . . 12 ((𝑉 = 𝑉 ∧ (1st𝑟)𝑉(1st𝑧)) → (1st𝑧)𝑉(1st𝑟))
7459, 68, 73syl2anc 579 . . . . . . . . . . 11 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → (1st𝑧)𝑉(1st𝑟))
75 simpll3 1273 . . . . . . . . . . . 12 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → 𝑀 ⊆ (𝑋 × 𝑋))
76 simplr 785 . . . . . . . . . . . 12 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → 𝑟𝑀)
77 1st2ndbr 7417 . . . . . . . . . . . . 13 ((Rel 𝑀𝑟𝑀) → (1st𝑟)𝑀(2nd𝑟))
7847, 77sylan 575 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑋 × 𝑋) ∧ 𝑟𝑀) → (1st𝑟)𝑀(2nd𝑟))
7975, 76, 78syl2anc 579 . . . . . . . . . . 11 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → (1st𝑟)𝑀(2nd𝑟))
80 xp2nd 7399 . . . . . . . . . . . . 13 (𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) → (2nd𝑧) ∈ (𝑉 “ {(2nd𝑟)}))
8180adantl 473 . . . . . . . . . . . 12 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → (2nd𝑧) ∈ (𝑉 “ {(2nd𝑟)}))
82 elrelimasn 5671 . . . . . . . . . . . . 13 (Rel 𝑉 → ((2nd𝑧) ∈ (𝑉 “ {(2nd𝑟)}) ↔ (2nd𝑟)𝑉(2nd𝑧)))
8382biimpa 468 . . . . . . . . . . . 12 ((Rel 𝑉 ∧ (2nd𝑧) ∈ (𝑉 “ {(2nd𝑟)})) → (2nd𝑟)𝑉(2nd𝑧))
8463, 81, 83syl2anc 579 . . . . . . . . . . 11 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → (2nd𝑟)𝑉(2nd𝑧))
8569, 38, 373pm3.2i 1438 . . . . . . . . . . . . 13 ((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V)
86 brcogw 5459 . . . . . . . . . . . . 13 ((((1st𝑧) ∈ V ∧ (2nd𝑟) ∈ V ∧ (1st𝑟) ∈ V) ∧ ((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟))) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
8785, 86mpan 681 . . . . . . . . . . . 12 (((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) → (1st𝑧)(𝑀𝑉)(2nd𝑟))
88 fvex 6388 . . . . . . . . . . . . . 14 (2nd𝑧) ∈ V
8969, 88, 383pm3.2i 1438 . . . . . . . . . . . . 13 ((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V)
90 brcogw 5459 . . . . . . . . . . . . 13 ((((1st𝑧) ∈ V ∧ (2nd𝑧) ∈ V ∧ (2nd𝑟) ∈ V) ∧ ((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧))) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
9189, 90mpan 681 . . . . . . . . . . . 12 (((1st𝑧)(𝑀𝑉)(2nd𝑟) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
9287, 91sylan 575 . . . . . . . . . . 11 ((((1st𝑧)𝑉(1st𝑟) ∧ (1st𝑟)𝑀(2nd𝑟)) ∧ (2nd𝑟)𝑉(2nd𝑧)) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
9374, 79, 84, 92syl21anc 866 . . . . . . . . . 10 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → (1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧))
94 df-br 4810 . . . . . . . . . 10 ((1st𝑧)(𝑉 ∘ (𝑀𝑉))(2nd𝑧) ↔ ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
9593, 94sylib 209 . . . . . . . . 9 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → ⟨(1st𝑧), (2nd𝑧)⟩ ∈ (𝑉 ∘ (𝑀𝑉)))
9657, 95eqeltrd 2844 . . . . . . . 8 ((((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) ∧ 𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)}))) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉)))
9796ex 401 . . . . . . 7 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → (𝑧 ∈ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) → 𝑧 ∈ (𝑉 ∘ (𝑀𝑉))))
9897ssrdv 3767 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) ⊆ (𝑉 ∘ (𝑀𝑉)))
99 simp1 1166 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → 𝑈 ∈ (UnifOn‘𝑋))
100 simp2l 1256 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → 𝑉𝑈)
101 ustssxp 22287 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈) → 𝑉 ⊆ (𝑋 × 𝑋))
10299, 100, 101syl2anc 579 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → 𝑉 ⊆ (𝑋 × 𝑋))
103 coss1 5446 . . . . . . . . . 10 (𝑉 ⊆ (𝑋 × 𝑋) → (𝑉 ∘ (𝑀𝑉)) ⊆ ((𝑋 × 𝑋) ∘ (𝑀𝑉)))
104102, 103syl 17 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀𝑉)) ⊆ ((𝑋 × 𝑋) ∘ (𝑀𝑉)))
105 coss1 5446 . . . . . . . . . . . 12 (𝑀 ⊆ (𝑋 × 𝑋) → (𝑀𝑉) ⊆ ((𝑋 × 𝑋) ∘ 𝑉))
10624, 105syl 17 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑀𝑉) ⊆ ((𝑋 × 𝑋) ∘ 𝑉))
107 coss2 5447 . . . . . . . . . . . . 13 (𝑉 ⊆ (𝑋 × 𝑋) → ((𝑋 × 𝑋) ∘ 𝑉) ⊆ ((𝑋 × 𝑋) ∘ (𝑋 × 𝑋)))
108 xpcoid 5862 . . . . . . . . . . . . 13 ((𝑋 × 𝑋) ∘ (𝑋 × 𝑋)) = (𝑋 × 𝑋)
109107, 108syl6sseq 3811 . . . . . . . . . . . 12 (𝑉 ⊆ (𝑋 × 𝑋) → ((𝑋 × 𝑋) ∘ 𝑉) ⊆ (𝑋 × 𝑋))
110102, 109syl 17 . . . . . . . . . . 11 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → ((𝑋 × 𝑋) ∘ 𝑉) ⊆ (𝑋 × 𝑋))
111106, 110sstrd 3771 . . . . . . . . . 10 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑀𝑉) ⊆ (𝑋 × 𝑋))
112 coss2 5447 . . . . . . . . . . 11 ((𝑀𝑉) ⊆ (𝑋 × 𝑋) → ((𝑋 × 𝑋) ∘ (𝑀𝑉)) ⊆ ((𝑋 × 𝑋) ∘ (𝑋 × 𝑋)))
113112, 108syl6sseq 3811 . . . . . . . . . 10 ((𝑀𝑉) ⊆ (𝑋 × 𝑋) → ((𝑋 × 𝑋) ∘ (𝑀𝑉)) ⊆ (𝑋 × 𝑋))
114111, 113syl 17 . . . . . . . . 9 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → ((𝑋 × 𝑋) ∘ (𝑀𝑉)) ⊆ (𝑋 × 𝑋))
115104, 114sstrd 3771 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀𝑉)) ⊆ (𝑋 × 𝑋))
116 utopbas 22318 . . . . . . . . . . . 12 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = (unifTop‘𝑈))
1171unieqi 4603 . . . . . . . . . . . 12 𝐽 = (unifTop‘𝑈)
118116, 117syl6eqr 2817 . . . . . . . . . . 11 (𝑈 ∈ (UnifOn‘𝑋) → 𝑋 = 𝐽)
119118sqxpeqd 5309 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = ( 𝐽 × 𝐽))
12034, 34txuni 21675 . . . . . . . . . . 11 ((𝐽 ∈ Top ∧ 𝐽 ∈ Top) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
1213, 3, 120syl2anc 579 . . . . . . . . . 10 (𝑈 ∈ (UnifOn‘𝑋) → ( 𝐽 × 𝐽) = (𝐽 ×t 𝐽))
122119, 121eqtrd 2799 . . . . . . . . 9 (𝑈 ∈ (UnifOn‘𝑋) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
1231223ad2ant1 1163 . . . . . . . 8 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑋 × 𝑋) = (𝐽 ×t 𝐽))
124115, 123sseqtrd 3801 . . . . . . 7 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀𝑉)) ⊆ (𝐽 ×t 𝐽))
125124adantr 472 . . . . . 6 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → (𝑉 ∘ (𝑀𝑉)) ⊆ (𝐽 ×t 𝐽))
126 eqid 2765 . . . . . . 7 (𝐽 ×t 𝐽) = (𝐽 ×t 𝐽)
127126ssnei2 21200 . . . . . 6 ((((𝐽 ×t 𝐽) ∈ Top ∧ ((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑟})) ∧ (((𝑉 “ {(1st𝑟)}) × (𝑉 “ {(2nd𝑟)})) ⊆ (𝑉 ∘ (𝑀𝑉)) ∧ (𝑉 ∘ (𝑀𝑉)) ⊆ (𝐽 ×t 𝐽))) → (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑟}))
12820, 53, 98, 125, 127syl22anc 867 . . . . 5 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑟𝑀) → (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑟}))
129128ralrimiva 3113 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → ∀𝑟𝑀 (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑟}))
130129adantr 472 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 ≠ ∅) → ∀𝑟𝑀 (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑟}))
1316adantr 472 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 ≠ ∅) → (𝐽 ×t 𝐽) ∈ Top)
13224, 123sseqtrd 3801 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → 𝑀 (𝐽 ×t 𝐽))
133132adantr 472 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 ≠ ∅) → 𝑀 (𝐽 ×t 𝐽))
134 simpr 477 . . . 4 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 ≠ ∅) → 𝑀 ≠ ∅)
135126neips 21197 . . . 4 (((𝐽 ×t 𝐽) ∈ Top ∧ 𝑀 (𝐽 ×t 𝐽) ∧ 𝑀 ≠ ∅) → ((𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀) ↔ ∀𝑟𝑀 (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑟})))
136131, 133, 134, 135syl3anc 1490 . . 3 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 ≠ ∅) → ((𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀) ↔ ∀𝑟𝑀 (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘{𝑟})))
137130, 136mpbird 248 . 2 (((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) ∧ 𝑀 ≠ ∅) → (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀))
13819, 137pm2.61dane 3024 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ (𝑉𝑈𝑉 = 𝑉) ∧ 𝑀 ⊆ (𝑋 × 𝑋)) → (𝑉 ∘ (𝑀𝑉)) ∈ ((nei‘(𝐽 ×t 𝐽))‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  Vcvv 3350  wss 3732  c0 4079  {csn 4334  cop 4340   cuni 4594   class class class wbr 4809   × cxp 5275  ccnv 5276  cima 5280  ccom 5281  Rel wrel 5282  cfv 6068  (class class class)co 6842  1st c1st 7364  2nd c2nd 7365  Topctop 20977  neicnei 21181   ×t ctx 21643  UnifOncust 22282  unifTopcutop 22313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-en 8161  df-fin 8164  df-fi 8524  df-topgen 16370  df-top 20978  df-topon 20995  df-bases 21030  df-nei 21182  df-tx 21645  df-ust 22283  df-utop 22314
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator