| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5625 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 2 | xpeq2 5632 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2786 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5149 df-xp 5617 |
| This theorem is referenced by: xpeq12i 5639 xpeq12d 5642 xpid11 5867 xp11 6117 infxpenlem 9899 pwfseqlem4a 10547 pwfseqlem4 10548 pwfseqlem5 10549 pwfseq 10550 pwsval 17385 mamufval 22302 mvmulfval 22452 txtopon 23501 txbasval 23516 txindislem 23543 ismet 24233 isxmet 24234 shsval 31284 sat1el2xp 35415 bj-imdirvallem 37214 prdsbnd2 37835 ismgmOLD 37890 opidon2OLD 37894 ttac 43069 rfovd 44034 fsovrfovd 44042 sblpnf 44343 |
| Copyright terms: Public domain | W3C validator |