Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5628 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
2 | xpeq2 5635 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
3 | 1, 2 | sylan9eq 2796 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 × cxp 5612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-opab 5152 df-xp 5620 |
This theorem is referenced by: xpeq12i 5642 xpeq12d 5645 xpid11 5867 xp11 6107 infxpenlem 9862 fpwwe2lem4 10483 pwfseqlem4a 10510 pwfseqlem4 10511 pwfseqlem5 10512 pwfseq 10513 pwsval 17286 mamufval 21632 mvmulfval 21789 txtopon 22840 txbasval 22855 txindislem 22882 ismet 23574 isxmet 23575 shsval 29903 sat1el2xp 33581 bj-imdirvallem 35449 prdsbnd2 36051 ismgmOLD 36106 opidon2OLD 36110 ttac 41109 rfovd 41919 fsovrfovd 41927 sblpnf 42238 |
Copyright terms: Public domain | W3C validator |