Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5594 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
2 | xpeq2 5601 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
3 | 1, 2 | sylan9eq 2799 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-xp 5586 |
This theorem is referenced by: xpeq12i 5608 xpeq12d 5611 xpid11 5830 xp11 6067 infxpenlem 9700 fpwwe2lem4 10321 pwfseqlem4a 10348 pwfseqlem4 10349 pwfseqlem5 10350 pwfseq 10351 pwsval 17114 mamufval 21444 mvmulfval 21599 txtopon 22650 txbasval 22665 txindislem 22692 ismet 23384 isxmet 23385 shsval 29575 sat1el2xp 33241 bj-imdirvallem 35278 prdsbnd2 35880 ismgmOLD 35935 opidon2OLD 35939 ttac 40774 rfovd 41498 fsovrfovd 41506 sblpnf 41817 |
Copyright terms: Public domain | W3C validator |