| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5633 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 2 | xpeq2 5640 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5155 df-xp 5625 |
| This theorem is referenced by: xpeq12i 5647 xpeq12d 5650 xpid11 5874 xp11 6124 infxpenlem 9907 pwfseqlem4a 10555 pwfseqlem4 10556 pwfseqlem5 10557 pwfseq 10558 pwsval 17390 mamufval 22277 mvmulfval 22427 txtopon 23476 txbasval 23491 txindislem 23518 ismet 24209 isxmet 24210 shsval 31256 sat1el2xp 35352 bj-imdirvallem 37154 prdsbnd2 37775 ismgmOLD 37830 opidon2OLD 37834 ttac 43009 rfovd 43974 fsovrfovd 43982 sblpnf 44283 |
| Copyright terms: Public domain | W3C validator |