![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5703 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
2 | xpeq2 5710 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
3 | 1, 2 | sylan9eq 2795 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-opab 5211 df-xp 5695 |
This theorem is referenced by: xpeq12i 5717 xpeq12d 5720 xpid11 5946 xp11 6197 infxpenlem 10051 pwfseqlem4a 10699 pwfseqlem4 10700 pwfseqlem5 10701 pwfseq 10702 pwsval 17533 mamufval 22412 mvmulfval 22564 txtopon 23615 txbasval 23630 txindislem 23657 ismet 24349 isxmet 24350 shsval 31341 sat1el2xp 35364 bj-imdirvallem 37163 prdsbnd2 37782 ismgmOLD 37837 opidon2OLD 37841 ttac 43025 rfovd 43991 fsovrfovd 43999 sblpnf 44306 |
Copyright terms: Public domain | W3C validator |