| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5652 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 2 | xpeq2 5659 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2784 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: xpeq12i 5666 xpeq12d 5669 xpid11 5896 xp11 6148 infxpenlem 9966 pwfseqlem4a 10614 pwfseqlem4 10615 pwfseqlem5 10616 pwfseq 10617 pwsval 17449 mamufval 22279 mvmulfval 22429 txtopon 23478 txbasval 23493 txindislem 23520 ismet 24211 isxmet 24212 shsval 31241 sat1el2xp 35366 bj-imdirvallem 37168 prdsbnd2 37789 ismgmOLD 37844 opidon2OLD 37848 ttac 43025 rfovd 43990 fsovrfovd 43998 sblpnf 44299 |
| Copyright terms: Public domain | W3C validator |