| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5655 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 2 | xpeq2 5662 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2785 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: xpeq12i 5669 xpeq12d 5672 xpid11 5899 xp11 6151 infxpenlem 9973 pwfseqlem4a 10621 pwfseqlem4 10622 pwfseqlem5 10623 pwfseq 10624 pwsval 17456 mamufval 22286 mvmulfval 22436 txtopon 23485 txbasval 23500 txindislem 23527 ismet 24218 isxmet 24219 shsval 31248 sat1el2xp 35373 bj-imdirvallem 37175 prdsbnd2 37796 ismgmOLD 37851 opidon2OLD 37855 ttac 43032 rfovd 43997 fsovrfovd 44005 sblpnf 44306 |
| Copyright terms: Public domain | W3C validator |