Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version |
Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
Ref | Expression |
---|---|
xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 5604 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
2 | xpeq2 5611 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
3 | 1, 2 | sylan9eq 2799 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-opab 5138 df-xp 5596 |
This theorem is referenced by: xpeq12i 5618 xpeq12d 5621 xpid11 5844 xp11 6083 infxpenlem 9778 fpwwe2lem4 10399 pwfseqlem4a 10426 pwfseqlem4 10427 pwfseqlem5 10428 pwfseq 10429 pwsval 17206 mamufval 21543 mvmulfval 21700 txtopon 22751 txbasval 22766 txindislem 22793 ismet 23485 isxmet 23486 shsval 29683 sat1el2xp 33350 bj-imdirvallem 35360 prdsbnd2 35962 ismgmOLD 36017 opidon2OLD 36021 ttac 40865 rfovd 41616 fsovrfovd 41624 sblpnf 41935 |
Copyright terms: Public domain | W3C validator |