| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq12 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for Cartesian product. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| xpeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 5673 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 2 | xpeq2 5680 | . 2 ⊢ (𝐶 = 𝐷 → (𝐵 × 𝐶) = (𝐵 × 𝐷)) | |
| 3 | 1, 2 | sylan9eq 2791 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 × 𝐶) = (𝐵 × 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 × cxp 5657 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-opab 5187 df-xp 5665 |
| This theorem is referenced by: xpeq12i 5687 xpeq12d 5690 xpid11 5917 xp11 6169 infxpenlem 10032 pwfseqlem4a 10680 pwfseqlem4 10681 pwfseqlem5 10682 pwfseq 10683 pwsval 17505 mamufval 22335 mvmulfval 22485 txtopon 23534 txbasval 23549 txindislem 23576 ismet 24267 isxmet 24268 shsval 31298 sat1el2xp 35406 bj-imdirvallem 37203 prdsbnd2 37824 ismgmOLD 37879 opidon2OLD 37883 ttac 43027 rfovd 43992 fsovrfovd 44000 sblpnf 44301 |
| Copyright terms: Public domain | W3C validator |