Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmcl Structured version   Visualization version   GIF version

Theorem sitmcl 34335
Description: Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitmcl.0 (𝜑𝑊 ∈ Mnd)
sitmcl.1 (𝜑𝑊 ∈ ∞MetSp)
sitmcl.2 (𝜑𝑀 ran measures)
sitmcl.3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitmcl.4 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitmcl (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))

Proof of Theorem sitmcl
Dummy variables 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (dist‘𝑊) = (dist‘𝑊)
2 sitmcl.1 . . 3 (𝜑𝑊 ∈ ∞MetSp)
3 sitmcl.2 . . 3 (𝜑𝑀 ran measures)
4 sitmcl.3 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
5 sitmcl.4 . . 3 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
61, 2, 3, 4, 5sitmfval 34334 . 2 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f (dist‘𝑊)𝐺)))
7 xrge0base 17546 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
8 xrge0topn 33926 . . . 4 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
98eqcomi 2738 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
10 eqid 2729 . . 3 (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞))) = (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞)))
11 xrge00 32998 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
12 ovex 7402 . . . 4 (0[,]+∞) ∈ V
13 eqid 2729 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
14 ax-xrsvsca 32989 . . . . 5 ·e = ( ·𝑠 ‘ℝ*𝑠)
1513, 14ressvsca 17283 . . . 4 ((0[,]+∞) ∈ V → ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞))))
1612, 15ax-mp 5 . . 3 ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞)))
17 ax-xrssca 32988 . . . . . 6 fld = (Scalar‘ℝ*𝑠)
1813, 17resssca 17282 . . . . 5 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘(ℝ*𝑠s (0[,]+∞))))
1912, 18ax-mp 5 . . . 4 fld = (Scalar‘(ℝ*𝑠s (0[,]+∞)))
2019fveq2i 6843 . . 3 (ℝHom‘ℝfld) = (ℝHom‘(Scalar‘(ℝ*𝑠s (0[,]+∞))))
21 ovexd 7404 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ V)
22 eqid 2729 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
23 eqid 2729 . . . . . . 7 (TopOpen‘𝑊) = (TopOpen‘𝑊)
24 eqid 2729 . . . . . . 7 (sigaGen‘(TopOpen‘𝑊)) = (sigaGen‘(TopOpen‘𝑊))
25 eqid 2729 . . . . . . 7 (0g𝑊) = (0g𝑊)
26 eqid 2729 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
27 eqid 2729 . . . . . . 7 (ℝHom‘(Scalar‘𝑊)) = (ℝHom‘(Scalar‘𝑊))
2822, 23, 24, 25, 26, 27, 2, 3, 4sibff 34320 . . . . . 6 (𝜑𝐹: dom 𝑀 (TopOpen‘𝑊))
29 xmstps 24374 . . . . . . . 8 (𝑊 ∈ ∞MetSp → 𝑊 ∈ TopSp)
3022, 23tpsuni 22856 . . . . . . . 8 (𝑊 ∈ TopSp → (Base‘𝑊) = (TopOpen‘𝑊))
312, 29, 303syl 18 . . . . . . 7 (𝜑 → (Base‘𝑊) = (TopOpen‘𝑊))
32 feq3 6650 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3331, 32syl 17 . . . . . 6 (𝜑 → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3428, 33mpbird 257 . . . . 5 (𝜑𝐹: dom 𝑀⟶(Base‘𝑊))
3522, 23, 24, 25, 26, 27, 2, 3, 5sibff 34320 . . . . . 6 (𝜑𝐺: dom 𝑀 (TopOpen‘𝑊))
36 feq3 6650 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3731, 36syl 17 . . . . . 6 (𝜑 → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3835, 37mpbird 257 . . . . 5 (𝜑𝐺: dom 𝑀⟶(Base‘𝑊))
39 dmexg 7857 . . . . . 6 (𝑀 ran measures → dom 𝑀 ∈ V)
40 uniexg 7696 . . . . . 6 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
413, 39, 403syl 18 . . . . 5 (𝜑 dom 𝑀 ∈ V)
4234, 38, 41ofresid 32616 . . . 4 (𝜑 → (𝐹f (dist‘𝑊)𝐺) = (𝐹f ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺))
432, 29syl 17 . . . . 5 (𝜑𝑊 ∈ TopSp)
44 eqid 2729 . . . . . . . 8 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
4522, 44xmsxmet 24377 . . . . . . 7 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
46 xmetpsmet 24269 . . . . . . 7 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
472, 45, 463syl 18 . . . . . 6 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
48 psmetxrge0 24234 . . . . . 6 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
4947, 48syl 17 . . . . 5 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
50 xrge0tps 33925 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
5150a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
5223, 22, 44xmstopn 24372 . . . . . . . 8 (𝑊 ∈ ∞MetSp → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
532, 52syl 17 . . . . . . 7 (𝜑 → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
54 eqid 2729 . . . . . . . . 9 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
5554methaus 24441 . . . . . . . 8 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
562, 45, 553syl 18 . . . . . . 7 (𝜑 → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
5753, 56eqeltrd 2828 . . . . . 6 (𝜑 → (TopOpen‘𝑊) ∈ Haus)
58 haust1 23272 . . . . . 6 ((TopOpen‘𝑊) ∈ Haus → (TopOpen‘𝑊) ∈ Fre)
5957, 58syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑊) ∈ Fre)
602, 45syl 17 . . . . . . 7 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
61 sitmcl.0 . . . . . . . 8 (𝜑𝑊 ∈ Mnd)
6222, 25mndidcl 18658 . . . . . . . 8 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
6361, 62syl 17 . . . . . . 7 (𝜑 → (0g𝑊) ∈ (Base‘𝑊))
64 xmet0 24263 . . . . . . 7 ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ (0g𝑊) ∈ (Base‘𝑊)) → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6560, 63, 64syl2anc 584 . . . . . 6 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6665, 11eqtrdi 2780 . . . . 5 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = (0g‘(ℝ*𝑠s (0[,]+∞))))
6722, 23, 24, 25, 26, 27, 2, 3, 4, 7, 43, 49, 5, 51, 59, 66sibfof 34324 . . . 4 (𝜑 → (𝐹f ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
6842, 67eqeltrd 2828 . . 3 (𝜑 → (𝐹f (dist‘𝑊)𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
69 rebase 21548 . . . . 5 ℝ = (Base‘ℝfld)
7069, 69xpeq12i 5659 . . . 4 (ℝ × ℝ) = ((Base‘ℝfld) × (Base‘ℝfld))
7170reseq2i 5936 . . 3 ((dist‘ℝfld) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ ((Base‘ℝfld) × (Base‘ℝfld)))
72 xrge0cmn 21386 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
7372a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
74 rerrext 33992 . . . . 5 fld ∈ ℝExt
7519, 74eqeltrri 2825 . . . 4 (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt
7675a1i 11 . . 3 (𝜑 → (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt )
77 rrhre 34004 . . . . . . . . 9 (ℝHom‘ℝfld) = ( I ↾ ℝ)
7877imaeq1i 6017 . . . . . . . 8 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (( I ↾ ℝ) “ (0[,)+∞))
79 0re 11152 . . . . . . . . . 10 0 ∈ ℝ
80 pnfxr 11204 . . . . . . . . . 10 +∞ ∈ ℝ*
81 icossre 13365 . . . . . . . . . 10 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (0[,)+∞) ⊆ ℝ)
8279, 80, 81mp2an 692 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
83 resiima 6036 . . . . . . . . 9 ((0[,)+∞) ⊆ ℝ → (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞))
8482, 83ax-mp 5 . . . . . . . 8 (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞)
8578, 84eqtri 2752 . . . . . . 7 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (0[,)+∞)
86 icossicc 13373 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
8785, 86eqsstri 3990 . . . . . 6 ((ℝHom‘ℝfld) “ (0[,)+∞)) ⊆ (0[,]+∞)
8887sseli 3939 . . . . 5 (𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) → 𝑚 ∈ (0[,]+∞))
89883ad2ant2 1134 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑚 ∈ (0[,]+∞))
90 simp3 1138 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
91 ge0xmulcl 13400 . . . 4 ((𝑚 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
9289, 90, 91syl2anc 584 . . 3 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
937, 9, 10, 11, 16, 20, 21, 3, 68, 19, 71, 51, 73, 76, 92sitgclg 34326 . 2 (𝜑 → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f (dist‘𝑊)𝐺)) ∈ (0[,]+∞))
946, 93eqeltrd 2828 1 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911   cuni 4867   I cid 5525   × cxp 5629  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cr 11043  0cc0 11044  +∞cpnf 11181  *cxr 11183  cle 11185   ·e cxmu 13047  [,)cico 13284  [,]cicc 13285  Basecbs 17155  s cress 17176  Scalarcsca 17199   ·𝑠 cvsca 17200  distcds 17205  t crest 17359  TopOpenctopn 17360  0gc0g 17378  ordTopcordt 17438  *𝑠cxrs 17439  Mndcmnd 18643  CMndccmn 19694  PsMetcpsmet 21280  ∞Metcxmet 21281  MetOpencmopn 21286  fldcrefld 21546  TopSpctps 22852  Frect1 23227  Hauscha 23228  ∞MetSpcxms 24238  ℝHomcrrh 33976   ℝExt crrext 33977  sigaGencsigagen 34121  measurescmeas 34178  sitmcsitm 34312  sitgcsitg 34313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124  ax-xrssca 32988  ax-xrsvsca 32989
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-dvds 16199  df-gcd 16441  df-numer 16681  df-denom 16682  df-gz 16877  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-ordt 17440  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-proset 18235  df-poset 18254  df-plt 18269  df-toset 18356  df-ps 18507  df-tsr 18508  df-plusf 18548  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-ghm 19127  df-cntz 19231  df-od 19442  df-cmn 19696  df-abl 19697  df-omnd 20035  df-ogrp 20036  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-rhm 20392  df-nzr 20433  df-subrng 20466  df-subrg 20490  df-drng 20651  df-field 20652  df-abv 20729  df-orng 20779  df-ofld 20780  df-lmod 20800  df-scaf 20801  df-sra 21112  df-rgmod 21113  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-metu 21295  df-cnfld 21297  df-zring 21389  df-zrh 21445  df-zlm 21446  df-chr 21447  df-refld 21547  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-t1 23234  df-haus 23235  df-reg 23236  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-fcls 23861  df-cnext 23980  df-tmd 23992  df-tgp 23993  df-tsms 24047  df-trg 24080  df-ust 24121  df-utop 24152  df-uss 24177  df-usp 24178  df-ucn 24196  df-cfilu 24207  df-cusp 24218  df-xms 24241  df-ms 24242  df-tms 24243  df-nm 24503  df-ngp 24504  df-nrg 24506  df-nlm 24507  df-ii 24803  df-cncf 24804  df-cfil 25188  df-cmet 25190  df-cms 25268  df-limc 25800  df-dv 25801  df-log 26498  df-qqh 33954  df-rrh 33978  df-rrext 33982  df-esum 34011  df-siga 34092  df-sigagen 34122  df-meas 34179  df-mbfm 34233  df-sitg 34314  df-sitm 34315
This theorem is referenced by:  sitmf  34336
  Copyright terms: Public domain W3C validator