Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmcl Structured version   Visualization version   GIF version

Theorem sitmcl 34349
Description: Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitmcl.0 (𝜑𝑊 ∈ Mnd)
sitmcl.1 (𝜑𝑊 ∈ ∞MetSp)
sitmcl.2 (𝜑𝑀 ran measures)
sitmcl.3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitmcl.4 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitmcl (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))

Proof of Theorem sitmcl
Dummy variables 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . 3 (dist‘𝑊) = (dist‘𝑊)
2 sitmcl.1 . . 3 (𝜑𝑊 ∈ ∞MetSp)
3 sitmcl.2 . . 3 (𝜑𝑀 ran measures)
4 sitmcl.3 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
5 sitmcl.4 . . 3 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
61, 2, 3, 4, 5sitmfval 34348 . 2 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f (dist‘𝑊)𝐺)))
7 xrge0base 32959 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
8 xrge0topn 33940 . . . 4 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
98eqcomi 2739 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
10 eqid 2730 . . 3 (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞))) = (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞)))
11 xrge00 32960 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
12 ovex 7423 . . . 4 (0[,]+∞) ∈ V
13 eqid 2730 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
14 ax-xrsvsca 32950 . . . . 5 ·e = ( ·𝑠 ‘ℝ*𝑠)
1513, 14ressvsca 17314 . . . 4 ((0[,]+∞) ∈ V → ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞))))
1612, 15ax-mp 5 . . 3 ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞)))
17 ax-xrssca 32949 . . . . . 6 fld = (Scalar‘ℝ*𝑠)
1813, 17resssca 17313 . . . . 5 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘(ℝ*𝑠s (0[,]+∞))))
1912, 18ax-mp 5 . . . 4 fld = (Scalar‘(ℝ*𝑠s (0[,]+∞)))
2019fveq2i 6864 . . 3 (ℝHom‘ℝfld) = (ℝHom‘(Scalar‘(ℝ*𝑠s (0[,]+∞))))
21 ovexd 7425 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ V)
22 eqid 2730 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
23 eqid 2730 . . . . . . 7 (TopOpen‘𝑊) = (TopOpen‘𝑊)
24 eqid 2730 . . . . . . 7 (sigaGen‘(TopOpen‘𝑊)) = (sigaGen‘(TopOpen‘𝑊))
25 eqid 2730 . . . . . . 7 (0g𝑊) = (0g𝑊)
26 eqid 2730 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
27 eqid 2730 . . . . . . 7 (ℝHom‘(Scalar‘𝑊)) = (ℝHom‘(Scalar‘𝑊))
2822, 23, 24, 25, 26, 27, 2, 3, 4sibff 34334 . . . . . 6 (𝜑𝐹: dom 𝑀 (TopOpen‘𝑊))
29 xmstps 24348 . . . . . . . 8 (𝑊 ∈ ∞MetSp → 𝑊 ∈ TopSp)
3022, 23tpsuni 22830 . . . . . . . 8 (𝑊 ∈ TopSp → (Base‘𝑊) = (TopOpen‘𝑊))
312, 29, 303syl 18 . . . . . . 7 (𝜑 → (Base‘𝑊) = (TopOpen‘𝑊))
32 feq3 6671 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3331, 32syl 17 . . . . . 6 (𝜑 → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3428, 33mpbird 257 . . . . 5 (𝜑𝐹: dom 𝑀⟶(Base‘𝑊))
3522, 23, 24, 25, 26, 27, 2, 3, 5sibff 34334 . . . . . 6 (𝜑𝐺: dom 𝑀 (TopOpen‘𝑊))
36 feq3 6671 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3731, 36syl 17 . . . . . 6 (𝜑 → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3835, 37mpbird 257 . . . . 5 (𝜑𝐺: dom 𝑀⟶(Base‘𝑊))
39 dmexg 7880 . . . . . 6 (𝑀 ran measures → dom 𝑀 ∈ V)
40 uniexg 7719 . . . . . 6 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
413, 39, 403syl 18 . . . . 5 (𝜑 dom 𝑀 ∈ V)
4234, 38, 41ofresid 32573 . . . 4 (𝜑 → (𝐹f (dist‘𝑊)𝐺) = (𝐹f ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺))
432, 29syl 17 . . . . 5 (𝜑𝑊 ∈ TopSp)
44 eqid 2730 . . . . . . . 8 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
4522, 44xmsxmet 24351 . . . . . . 7 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
46 xmetpsmet 24243 . . . . . . 7 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
472, 45, 463syl 18 . . . . . 6 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
48 psmetxrge0 24208 . . . . . 6 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
4947, 48syl 17 . . . . 5 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
50 xrge0tps 33939 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
5150a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
5223, 22, 44xmstopn 24346 . . . . . . . 8 (𝑊 ∈ ∞MetSp → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
532, 52syl 17 . . . . . . 7 (𝜑 → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
54 eqid 2730 . . . . . . . . 9 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
5554methaus 24415 . . . . . . . 8 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
562, 45, 553syl 18 . . . . . . 7 (𝜑 → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
5753, 56eqeltrd 2829 . . . . . 6 (𝜑 → (TopOpen‘𝑊) ∈ Haus)
58 haust1 23246 . . . . . 6 ((TopOpen‘𝑊) ∈ Haus → (TopOpen‘𝑊) ∈ Fre)
5957, 58syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑊) ∈ Fre)
602, 45syl 17 . . . . . . 7 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
61 sitmcl.0 . . . . . . . 8 (𝜑𝑊 ∈ Mnd)
6222, 25mndidcl 18683 . . . . . . . 8 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
6361, 62syl 17 . . . . . . 7 (𝜑 → (0g𝑊) ∈ (Base‘𝑊))
64 xmet0 24237 . . . . . . 7 ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ (0g𝑊) ∈ (Base‘𝑊)) → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6560, 63, 64syl2anc 584 . . . . . 6 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6665, 11eqtrdi 2781 . . . . 5 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = (0g‘(ℝ*𝑠s (0[,]+∞))))
6722, 23, 24, 25, 26, 27, 2, 3, 4, 7, 43, 49, 5, 51, 59, 66sibfof 34338 . . . 4 (𝜑 → (𝐹f ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
6842, 67eqeltrd 2829 . . 3 (𝜑 → (𝐹f (dist‘𝑊)𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
69 rebase 21522 . . . . 5 ℝ = (Base‘ℝfld)
7069, 69xpeq12i 5669 . . . 4 (ℝ × ℝ) = ((Base‘ℝfld) × (Base‘ℝfld))
7170reseq2i 5950 . . 3 ((dist‘ℝfld) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ ((Base‘ℝfld) × (Base‘ℝfld)))
72 xrge0cmn 21332 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
7372a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
74 rerrext 34006 . . . . 5 fld ∈ ℝExt
7519, 74eqeltrri 2826 . . . 4 (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt
7675a1i 11 . . 3 (𝜑 → (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt )
77 rrhre 34018 . . . . . . . . 9 (ℝHom‘ℝfld) = ( I ↾ ℝ)
7877imaeq1i 6031 . . . . . . . 8 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (( I ↾ ℝ) “ (0[,)+∞))
79 0re 11183 . . . . . . . . . 10 0 ∈ ℝ
80 pnfxr 11235 . . . . . . . . . 10 +∞ ∈ ℝ*
81 icossre 13396 . . . . . . . . . 10 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (0[,)+∞) ⊆ ℝ)
8279, 80, 81mp2an 692 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
83 resiima 6050 . . . . . . . . 9 ((0[,)+∞) ⊆ ℝ → (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞))
8482, 83ax-mp 5 . . . . . . . 8 (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞)
8578, 84eqtri 2753 . . . . . . 7 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (0[,)+∞)
86 icossicc 13404 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
8785, 86eqsstri 3996 . . . . . 6 ((ℝHom‘ℝfld) “ (0[,)+∞)) ⊆ (0[,]+∞)
8887sseli 3945 . . . . 5 (𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) → 𝑚 ∈ (0[,]+∞))
89883ad2ant2 1134 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑚 ∈ (0[,]+∞))
90 simp3 1138 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
91 ge0xmulcl 13431 . . . 4 ((𝑚 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
9289, 90, 91syl2anc 584 . . 3 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
937, 9, 10, 11, 16, 20, 21, 3, 68, 19, 71, 51, 73, 76, 92sitgclg 34340 . 2 (𝜑 → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f (dist‘𝑊)𝐺)) ∈ (0[,]+∞))
946, 93eqeltrd 2829 1 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   cuni 4874   I cid 5535   × cxp 5639  dom cdm 5641  ran crn 5642  cres 5643  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  cr 11074  0cc0 11075  +∞cpnf 11212  *cxr 11214  cle 11216   ·e cxmu 13078  [,)cico 13315  [,]cicc 13316  Basecbs 17186  s cress 17207  Scalarcsca 17230   ·𝑠 cvsca 17231  distcds 17236  t crest 17390  TopOpenctopn 17391  0gc0g 17409  ordTopcordt 17469  *𝑠cxrs 17470  Mndcmnd 18668  CMndccmn 19717  PsMetcpsmet 21255  ∞Metcxmet 21256  MetOpencmopn 21261  fldcrefld 21520  TopSpctps 22826  Frect1 23201  Hauscha 23202  ∞MetSpcxms 24212  ℝHomcrrh 33990   ℝExt crrext 33991  sigaGencsigagen 34135  measurescmeas 34192  sitmcsitm 34326  sitgcsitg 34327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155  ax-xrssca 32949  ax-xrsvsca 32950
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-dvds 16230  df-gcd 16472  df-numer 16712  df-denom 16713  df-gz 16908  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-ordt 17471  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-proset 18262  df-poset 18281  df-plt 18296  df-toset 18383  df-ps 18532  df-tsr 18533  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-od 19465  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-drng 20647  df-field 20648  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-metu 21270  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zlm 21421  df-chr 21422  df-refld 21521  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-t1 23208  df-haus 23209  df-reg 23210  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-fcls 23835  df-cnext 23954  df-tmd 23966  df-tgp 23967  df-tsms 24021  df-trg 24054  df-ust 24095  df-utop 24126  df-uss 24151  df-usp 24152  df-ucn 24170  df-cfilu 24181  df-cusp 24192  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-ii 24777  df-cncf 24778  df-cfil 25162  df-cmet 25164  df-cms 25242  df-limc 25774  df-dv 25775  df-log 26472  df-omnd 33020  df-ogrp 33021  df-orng 33282  df-ofld 33283  df-qqh 33968  df-rrh 33992  df-rrext 33996  df-esum 34025  df-siga 34106  df-sigagen 34136  df-meas 34193  df-mbfm 34247  df-sitg 34328  df-sitm 34329
This theorem is referenced by:  sitmf  34350
  Copyright terms: Public domain W3C validator