Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmcl Structured version   Visualization version   GIF version

Theorem sitmcl 32951
Description: Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitmcl.0 (𝜑𝑊 ∈ Mnd)
sitmcl.1 (𝜑𝑊 ∈ ∞MetSp)
sitmcl.2 (𝜑𝑀 ran measures)
sitmcl.3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitmcl.4 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitmcl (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))

Proof of Theorem sitmcl
Dummy variables 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (dist‘𝑊) = (dist‘𝑊)
2 sitmcl.1 . . 3 (𝜑𝑊 ∈ ∞MetSp)
3 sitmcl.2 . . 3 (𝜑𝑀 ran measures)
4 sitmcl.3 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
5 sitmcl.4 . . 3 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
61, 2, 3, 4, 5sitmfval 32950 . 2 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f (dist‘𝑊)𝐺)))
7 xrge0base 31876 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
8 xrge0topn 32524 . . . 4 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
98eqcomi 2745 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
10 eqid 2736 . . 3 (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞))) = (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞)))
11 xrge00 31877 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
12 ovex 7390 . . . 4 (0[,]+∞) ∈ V
13 eqid 2736 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
14 ax-xrsvsca 31865 . . . . 5 ·e = ( ·𝑠 ‘ℝ*𝑠)
1513, 14ressvsca 17225 . . . 4 ((0[,]+∞) ∈ V → ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞))))
1612, 15ax-mp 5 . . 3 ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞)))
17 ax-xrssca 31864 . . . . . 6 fld = (Scalar‘ℝ*𝑠)
1813, 17resssca 17224 . . . . 5 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘(ℝ*𝑠s (0[,]+∞))))
1912, 18ax-mp 5 . . . 4 fld = (Scalar‘(ℝ*𝑠s (0[,]+∞)))
2019fveq2i 6845 . . 3 (ℝHom‘ℝfld) = (ℝHom‘(Scalar‘(ℝ*𝑠s (0[,]+∞))))
21 ovexd 7392 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ V)
22 eqid 2736 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
23 eqid 2736 . . . . . . 7 (TopOpen‘𝑊) = (TopOpen‘𝑊)
24 eqid 2736 . . . . . . 7 (sigaGen‘(TopOpen‘𝑊)) = (sigaGen‘(TopOpen‘𝑊))
25 eqid 2736 . . . . . . 7 (0g𝑊) = (0g𝑊)
26 eqid 2736 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
27 eqid 2736 . . . . . . 7 (ℝHom‘(Scalar‘𝑊)) = (ℝHom‘(Scalar‘𝑊))
2822, 23, 24, 25, 26, 27, 2, 3, 4sibff 32936 . . . . . 6 (𝜑𝐹: dom 𝑀 (TopOpen‘𝑊))
29 xmstps 23806 . . . . . . . 8 (𝑊 ∈ ∞MetSp → 𝑊 ∈ TopSp)
3022, 23tpsuni 22285 . . . . . . . 8 (𝑊 ∈ TopSp → (Base‘𝑊) = (TopOpen‘𝑊))
312, 29, 303syl 18 . . . . . . 7 (𝜑 → (Base‘𝑊) = (TopOpen‘𝑊))
32 feq3 6651 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3331, 32syl 17 . . . . . 6 (𝜑 → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3428, 33mpbird 256 . . . . 5 (𝜑𝐹: dom 𝑀⟶(Base‘𝑊))
3522, 23, 24, 25, 26, 27, 2, 3, 5sibff 32936 . . . . . 6 (𝜑𝐺: dom 𝑀 (TopOpen‘𝑊))
36 feq3 6651 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3731, 36syl 17 . . . . . 6 (𝜑 → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3835, 37mpbird 256 . . . . 5 (𝜑𝐺: dom 𝑀⟶(Base‘𝑊))
39 dmexg 7840 . . . . . 6 (𝑀 ran measures → dom 𝑀 ∈ V)
40 uniexg 7677 . . . . . 6 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
413, 39, 403syl 18 . . . . 5 (𝜑 dom 𝑀 ∈ V)
4234, 38, 41ofresid 31558 . . . 4 (𝜑 → (𝐹f (dist‘𝑊)𝐺) = (𝐹f ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺))
432, 29syl 17 . . . . 5 (𝜑𝑊 ∈ TopSp)
44 eqid 2736 . . . . . . . 8 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
4522, 44xmsxmet 23809 . . . . . . 7 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
46 xmetpsmet 23701 . . . . . . 7 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
472, 45, 463syl 18 . . . . . 6 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
48 psmetxrge0 23666 . . . . . 6 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
4947, 48syl 17 . . . . 5 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
50 xrge0tps 32523 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
5150a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
5223, 22, 44xmstopn 23804 . . . . . . . 8 (𝑊 ∈ ∞MetSp → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
532, 52syl 17 . . . . . . 7 (𝜑 → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
54 eqid 2736 . . . . . . . . 9 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
5554methaus 23876 . . . . . . . 8 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
562, 45, 553syl 18 . . . . . . 7 (𝜑 → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
5753, 56eqeltrd 2838 . . . . . 6 (𝜑 → (TopOpen‘𝑊) ∈ Haus)
58 haust1 22703 . . . . . 6 ((TopOpen‘𝑊) ∈ Haus → (TopOpen‘𝑊) ∈ Fre)
5957, 58syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑊) ∈ Fre)
602, 45syl 17 . . . . . . 7 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
61 sitmcl.0 . . . . . . . 8 (𝜑𝑊 ∈ Mnd)
6222, 25mndidcl 18571 . . . . . . . 8 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
6361, 62syl 17 . . . . . . 7 (𝜑 → (0g𝑊) ∈ (Base‘𝑊))
64 xmet0 23695 . . . . . . 7 ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ (0g𝑊) ∈ (Base‘𝑊)) → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6560, 63, 64syl2anc 584 . . . . . 6 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6665, 11eqtrdi 2792 . . . . 5 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = (0g‘(ℝ*𝑠s (0[,]+∞))))
6722, 23, 24, 25, 26, 27, 2, 3, 4, 7, 43, 49, 5, 51, 59, 66sibfof 32940 . . . 4 (𝜑 → (𝐹f ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
6842, 67eqeltrd 2838 . . 3 (𝜑 → (𝐹f (dist‘𝑊)𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
69 rebase 21010 . . . . 5 ℝ = (Base‘ℝfld)
7069, 69xpeq12i 5661 . . . 4 (ℝ × ℝ) = ((Base‘ℝfld) × (Base‘ℝfld))
7170reseq2i 5934 . . 3 ((dist‘ℝfld) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ ((Base‘ℝfld) × (Base‘ℝfld)))
72 xrge0cmn 20839 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
7372a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
74 rerrext 32590 . . . . 5 fld ∈ ℝExt
7519, 74eqeltrri 2835 . . . 4 (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt
7675a1i 11 . . 3 (𝜑 → (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt )
77 rrhre 32602 . . . . . . . . 9 (ℝHom‘ℝfld) = ( I ↾ ℝ)
7877imaeq1i 6010 . . . . . . . 8 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (( I ↾ ℝ) “ (0[,)+∞))
79 0re 11157 . . . . . . . . . 10 0 ∈ ℝ
80 pnfxr 11209 . . . . . . . . . 10 +∞ ∈ ℝ*
81 icossre 13345 . . . . . . . . . 10 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (0[,)+∞) ⊆ ℝ)
8279, 80, 81mp2an 690 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
83 resiima 6028 . . . . . . . . 9 ((0[,)+∞) ⊆ ℝ → (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞))
8482, 83ax-mp 5 . . . . . . . 8 (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞)
8578, 84eqtri 2764 . . . . . . 7 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (0[,)+∞)
86 icossicc 13353 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
8785, 86eqsstri 3978 . . . . . 6 ((ℝHom‘ℝfld) “ (0[,)+∞)) ⊆ (0[,]+∞)
8887sseli 3940 . . . . 5 (𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) → 𝑚 ∈ (0[,]+∞))
89883ad2ant2 1134 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑚 ∈ (0[,]+∞))
90 simp3 1138 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
91 ge0xmulcl 13380 . . . 4 ((𝑚 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
9289, 90, 91syl2anc 584 . . 3 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
937, 9, 10, 11, 16, 20, 21, 3, 68, 19, 71, 51, 73, 76, 92sitgclg 32942 . 2 (𝜑 → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f (dist‘𝑊)𝐺)) ∈ (0[,]+∞))
946, 93eqeltrd 2838 1 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3445  wss 3910   cuni 4865   I cid 5530   × cxp 5631  dom cdm 5633  ran crn 5634  cres 5635  cima 5636  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  cr 11050  0cc0 11051  +∞cpnf 11186  *cxr 11188  cle 11190   ·e cxmu 13032  [,)cico 13266  [,]cicc 13267  Basecbs 17083  s cress 17112  Scalarcsca 17136   ·𝑠 cvsca 17137  distcds 17142  t crest 17302  TopOpenctopn 17303  0gc0g 17321  ordTopcordt 17381  *𝑠cxrs 17382  Mndcmnd 18556  CMndccmn 19562  PsMetcpsmet 20780  ∞Metcxmet 20781  MetOpencmopn 20786  fldcrefld 21008  TopSpctps 22281  Frect1 22658  Hauscha 22659  ∞MetSpcxms 23670  ℝHomcrrh 32574   ℝExt crrext 32575  sigaGencsigagen 32737  measurescmeas 32794  sitmcsitm 32928  sitgcsitg 32929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-ac2 10399  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131  ax-xrssca 31864  ax-xrsvsca 31865
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-ac 10052  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-sin 15952  df-cos 15953  df-pi 15955  df-dvds 16137  df-gcd 16375  df-numer 16610  df-denom 16611  df-gz 16802  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-ordt 17383  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-proset 18184  df-poset 18202  df-plt 18219  df-toset 18306  df-ps 18455  df-tsr 18456  df-plusf 18496  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-mulg 18873  df-subg 18925  df-ghm 19006  df-cntz 19097  df-od 19310  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-rnghom 20146  df-drng 20187  df-field 20188  df-subrg 20220  df-abv 20276  df-lmod 20324  df-scaf 20325  df-sra 20633  df-rgmod 20634  df-nzr 20728  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-metu 20795  df-cnfld 20797  df-zring 20870  df-zrh 20904  df-zlm 20905  df-chr 20906  df-refld 21009  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-t1 22665  df-haus 22666  df-reg 22667  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-fcls 23292  df-cnext 23411  df-tmd 23423  df-tgp 23424  df-tsms 23478  df-trg 23511  df-ust 23552  df-utop 23583  df-uss 23608  df-usp 23609  df-ucn 23628  df-cfilu 23639  df-cusp 23650  df-xms 23673  df-ms 23674  df-tms 23675  df-nm 23938  df-ngp 23939  df-nrg 23941  df-nlm 23942  df-ii 24240  df-cncf 24241  df-cfil 24619  df-cmet 24621  df-cms 24699  df-limc 25230  df-dv 25231  df-log 25912  df-omnd 31907  df-ogrp 31908  df-orng 32092  df-ofld 32093  df-qqh 32554  df-rrh 32576  df-rrext 32580  df-esum 32627  df-siga 32708  df-sigagen 32738  df-meas 32795  df-mbfm 32849  df-sitg 32930  df-sitm 32931
This theorem is referenced by:  sitmf  32952
  Copyright terms: Public domain W3C validator