Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmcl Structured version   Visualization version   GIF version

Theorem sitmcl 32318
Description: Closure of the integral distance between two simple functions, for an extended metric space. (Contributed by Thierry Arnoux, 13-Feb-2018.)
Hypotheses
Ref Expression
sitmcl.0 (𝜑𝑊 ∈ Mnd)
sitmcl.1 (𝜑𝑊 ∈ ∞MetSp)
sitmcl.2 (𝜑𝑀 ran measures)
sitmcl.3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
sitmcl.4 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
Assertion
Ref Expression
sitmcl (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))

Proof of Theorem sitmcl
Dummy variables 𝑥 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . 3 (dist‘𝑊) = (dist‘𝑊)
2 sitmcl.1 . . 3 (𝜑𝑊 ∈ ∞MetSp)
3 sitmcl.2 . . 3 (𝜑𝑀 ran measures)
4 sitmcl.3 . . 3 (𝜑𝐹 ∈ dom (𝑊sitg𝑀))
5 sitmcl.4 . . 3 (𝜑𝐺 ∈ dom (𝑊sitg𝑀))
61, 2, 3, 4, 5sitmfval 32317 . 2 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) = (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f (dist‘𝑊)𝐺)))
7 xrge0base 31294 . . 3 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
8 xrge0topn 31893 . . . 4 (TopOpen‘(ℝ*𝑠s (0[,]+∞))) = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
98eqcomi 2747 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) = (TopOpen‘(ℝ*𝑠s (0[,]+∞)))
10 eqid 2738 . . 3 (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞))) = (sigaGen‘((ordTop‘ ≤ ) ↾t (0[,]+∞)))
11 xrge00 31295 . . 3 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
12 ovex 7308 . . . 4 (0[,]+∞) ∈ V
13 eqid 2738 . . . . 5 (ℝ*𝑠s (0[,]+∞)) = (ℝ*𝑠s (0[,]+∞))
14 ax-xrsvsca 31283 . . . . 5 ·e = ( ·𝑠 ‘ℝ*𝑠)
1513, 14ressvsca 17054 . . . 4 ((0[,]+∞) ∈ V → ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞))))
1612, 15ax-mp 5 . . 3 ·e = ( ·𝑠 ‘(ℝ*𝑠s (0[,]+∞)))
17 ax-xrssca 31282 . . . . . 6 fld = (Scalar‘ℝ*𝑠)
1813, 17resssca 17053 . . . . 5 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘(ℝ*𝑠s (0[,]+∞))))
1912, 18ax-mp 5 . . . 4 fld = (Scalar‘(ℝ*𝑠s (0[,]+∞)))
2019fveq2i 6777 . . 3 (ℝHom‘ℝfld) = (ℝHom‘(Scalar‘(ℝ*𝑠s (0[,]+∞))))
21 ovexd 7310 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ V)
22 eqid 2738 . . . . . . 7 (Base‘𝑊) = (Base‘𝑊)
23 eqid 2738 . . . . . . 7 (TopOpen‘𝑊) = (TopOpen‘𝑊)
24 eqid 2738 . . . . . . 7 (sigaGen‘(TopOpen‘𝑊)) = (sigaGen‘(TopOpen‘𝑊))
25 eqid 2738 . . . . . . 7 (0g𝑊) = (0g𝑊)
26 eqid 2738 . . . . . . 7 ( ·𝑠𝑊) = ( ·𝑠𝑊)
27 eqid 2738 . . . . . . 7 (ℝHom‘(Scalar‘𝑊)) = (ℝHom‘(Scalar‘𝑊))
2822, 23, 24, 25, 26, 27, 2, 3, 4sibff 32303 . . . . . 6 (𝜑𝐹: dom 𝑀 (TopOpen‘𝑊))
29 xmstps 23606 . . . . . . . 8 (𝑊 ∈ ∞MetSp → 𝑊 ∈ TopSp)
3022, 23tpsuni 22085 . . . . . . . 8 (𝑊 ∈ TopSp → (Base‘𝑊) = (TopOpen‘𝑊))
312, 29, 303syl 18 . . . . . . 7 (𝜑 → (Base‘𝑊) = (TopOpen‘𝑊))
32 feq3 6583 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3331, 32syl 17 . . . . . 6 (𝜑 → (𝐹: dom 𝑀⟶(Base‘𝑊) ↔ 𝐹: dom 𝑀 (TopOpen‘𝑊)))
3428, 33mpbird 256 . . . . 5 (𝜑𝐹: dom 𝑀⟶(Base‘𝑊))
3522, 23, 24, 25, 26, 27, 2, 3, 5sibff 32303 . . . . . 6 (𝜑𝐺: dom 𝑀 (TopOpen‘𝑊))
36 feq3 6583 . . . . . . 7 ((Base‘𝑊) = (TopOpen‘𝑊) → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3731, 36syl 17 . . . . . 6 (𝜑 → (𝐺: dom 𝑀⟶(Base‘𝑊) ↔ 𝐺: dom 𝑀 (TopOpen‘𝑊)))
3835, 37mpbird 256 . . . . 5 (𝜑𝐺: dom 𝑀⟶(Base‘𝑊))
39 dmexg 7750 . . . . . 6 (𝑀 ran measures → dom 𝑀 ∈ V)
40 uniexg 7593 . . . . . 6 (dom 𝑀 ∈ V → dom 𝑀 ∈ V)
413, 39, 403syl 18 . . . . 5 (𝜑 dom 𝑀 ∈ V)
4234, 38, 41ofresid 30979 . . . 4 (𝜑 → (𝐹f (dist‘𝑊)𝐺) = (𝐹f ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺))
432, 29syl 17 . . . . 5 (𝜑𝑊 ∈ TopSp)
44 eqid 2738 . . . . . . . 8 ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) = ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))
4522, 44xmsxmet 23609 . . . . . . 7 (𝑊 ∈ ∞MetSp → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
46 xmetpsmet 23501 . . . . . . 7 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
472, 45, 463syl 18 . . . . . 6 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)))
48 psmetxrge0 23466 . . . . . 6 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (PsMet‘(Base‘𝑊)) → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
4947, 48syl 17 . . . . 5 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))):((Base‘𝑊) × (Base‘𝑊))⟶(0[,]+∞))
50 xrge0tps 31892 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ TopSp
5150a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ TopSp)
5223, 22, 44xmstopn 23604 . . . . . . . 8 (𝑊 ∈ ∞MetSp → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
532, 52syl 17 . . . . . . 7 (𝜑 → (TopOpen‘𝑊) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))))
54 eqid 2738 . . . . . . . . 9 (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) = (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))))
5554methaus 23676 . . . . . . . 8 (((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
562, 45, 553syl 18 . . . . . . 7 (𝜑 → (MetOpen‘((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))) ∈ Haus)
5753, 56eqeltrd 2839 . . . . . 6 (𝜑 → (TopOpen‘𝑊) ∈ Haus)
58 haust1 22503 . . . . . 6 ((TopOpen‘𝑊) ∈ Haus → (TopOpen‘𝑊) ∈ Fre)
5957, 58syl 17 . . . . 5 (𝜑 → (TopOpen‘𝑊) ∈ Fre)
602, 45syl 17 . . . . . . 7 (𝜑 → ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)))
61 sitmcl.0 . . . . . . . 8 (𝜑𝑊 ∈ Mnd)
6222, 25mndidcl 18400 . . . . . . . 8 (𝑊 ∈ Mnd → (0g𝑊) ∈ (Base‘𝑊))
6361, 62syl 17 . . . . . . 7 (𝜑 → (0g𝑊) ∈ (Base‘𝑊))
64 xmet0 23495 . . . . . . 7 ((((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊))) ∈ (∞Met‘(Base‘𝑊)) ∧ (0g𝑊) ∈ (Base‘𝑊)) → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6560, 63, 64syl2anc 584 . . . . . 6 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = 0)
6665, 11eqtrdi 2794 . . . . 5 (𝜑 → ((0g𝑊)((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))(0g𝑊)) = (0g‘(ℝ*𝑠s (0[,]+∞))))
6722, 23, 24, 25, 26, 27, 2, 3, 4, 7, 43, 49, 5, 51, 59, 66sibfof 32307 . . . 4 (𝜑 → (𝐹f ((dist‘𝑊) ↾ ((Base‘𝑊) × (Base‘𝑊)))𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
6842, 67eqeltrd 2839 . . 3 (𝜑 → (𝐹f (dist‘𝑊)𝐺) ∈ dom ((ℝ*𝑠s (0[,]+∞))sitg𝑀))
69 rebase 20811 . . . . 5 ℝ = (Base‘ℝfld)
7069, 69xpeq12i 5617 . . . 4 (ℝ × ℝ) = ((Base‘ℝfld) × (Base‘ℝfld))
7170reseq2i 5888 . . 3 ((dist‘ℝfld) ↾ (ℝ × ℝ)) = ((dist‘ℝfld) ↾ ((Base‘ℝfld) × (Base‘ℝfld)))
72 xrge0cmn 20640 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
7372a1i 11 . . 3 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
74 rerrext 31959 . . . . 5 fld ∈ ℝExt
7519, 74eqeltrri 2836 . . . 4 (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt
7675a1i 11 . . 3 (𝜑 → (Scalar‘(ℝ*𝑠s (0[,]+∞))) ∈ ℝExt )
77 rrhre 31971 . . . . . . . . 9 (ℝHom‘ℝfld) = ( I ↾ ℝ)
7877imaeq1i 5966 . . . . . . . 8 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (( I ↾ ℝ) “ (0[,)+∞))
79 0re 10977 . . . . . . . . . 10 0 ∈ ℝ
80 pnfxr 11029 . . . . . . . . . 10 +∞ ∈ ℝ*
81 icossre 13160 . . . . . . . . . 10 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (0[,)+∞) ⊆ ℝ)
8279, 80, 81mp2an 689 . . . . . . . . 9 (0[,)+∞) ⊆ ℝ
83 resiima 5984 . . . . . . . . 9 ((0[,)+∞) ⊆ ℝ → (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞))
8482, 83ax-mp 5 . . . . . . . 8 (( I ↾ ℝ) “ (0[,)+∞)) = (0[,)+∞)
8578, 84eqtri 2766 . . . . . . 7 ((ℝHom‘ℝfld) “ (0[,)+∞)) = (0[,)+∞)
86 icossicc 13168 . . . . . . 7 (0[,)+∞) ⊆ (0[,]+∞)
8785, 86eqsstri 3955 . . . . . 6 ((ℝHom‘ℝfld) “ (0[,)+∞)) ⊆ (0[,]+∞)
8887sseli 3917 . . . . 5 (𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) → 𝑚 ∈ (0[,]+∞))
89883ad2ant2 1133 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑚 ∈ (0[,]+∞))
90 simp3 1137 . . . 4 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → 𝑥 ∈ (0[,]+∞))
91 ge0xmulcl 13195 . . . 4 ((𝑚 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
9289, 90, 91syl2anc 584 . . 3 ((𝜑𝑚 ∈ ((ℝHom‘ℝfld) “ (0[,)+∞)) ∧ 𝑥 ∈ (0[,]+∞)) → (𝑚 ·e 𝑥) ∈ (0[,]+∞))
937, 9, 10, 11, 16, 20, 21, 3, 68, 19, 71, 51, 73, 76, 92sitgclg 32309 . 2 (𝜑 → (((ℝ*𝑠s (0[,]+∞))sitg𝑀)‘(𝐹f (dist‘𝑊)𝐺)) ∈ (0[,]+∞))
946, 93eqeltrd 2839 1 (𝜑 → (𝐹(𝑊sitm𝑀)𝐺) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887   cuni 4839   I cid 5488   × cxp 5587  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  cr 10870  0cc0 10871  +∞cpnf 11006  *cxr 11008  cle 11010   ·e cxmu 12847  [,)cico 13081  [,]cicc 13082  Basecbs 16912  s cress 16941  Scalarcsca 16965   ·𝑠 cvsca 16966  distcds 16971  t crest 17131  TopOpenctopn 17132  0gc0g 17150  ordTopcordt 17210  *𝑠cxrs 17211  Mndcmnd 18385  CMndccmn 19386  PsMetcpsmet 20581  ∞Metcxmet 20582  MetOpencmopn 20587  fldcrefld 20809  TopSpctps 22081  Frect1 22458  Hauscha 22459  ∞MetSpcxms 23470  ℝHomcrrh 31943   ℝExt crrext 31944  sigaGencsigagen 32106  measurescmeas 32163  sitmcsitm 32295  sitgcsitg 32296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951  ax-xrssca 31282  ax-xrsvsca 31283
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-dvds 15964  df-gcd 16202  df-numer 16439  df-denom 16440  df-gz 16631  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-ordt 17212  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-proset 18013  df-poset 18031  df-plt 18048  df-toset 18135  df-ps 18284  df-tsr 18285  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-od 19136  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-oppr 19862  df-dvdsr 19883  df-unit 19884  df-invr 19914  df-dvr 19925  df-rnghom 19959  df-drng 19993  df-field 19994  df-subrg 20022  df-abv 20077  df-lmod 20125  df-scaf 20126  df-sra 20434  df-rgmod 20435  df-nzr 20529  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-metu 20596  df-cnfld 20598  df-zring 20671  df-zrh 20705  df-zlm 20706  df-chr 20707  df-refld 20810  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-t1 22465  df-haus 22466  df-reg 22467  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-fcls 23092  df-cnext 23211  df-tmd 23223  df-tgp 23224  df-tsms 23278  df-trg 23311  df-ust 23352  df-utop 23383  df-uss 23408  df-usp 23409  df-ucn 23428  df-cfilu 23439  df-cusp 23450  df-xms 23473  df-ms 23474  df-tms 23475  df-nm 23738  df-ngp 23739  df-nrg 23741  df-nlm 23742  df-ii 24040  df-cncf 24041  df-cfil 24419  df-cmet 24421  df-cms 24499  df-limc 25030  df-dv 25031  df-log 25712  df-omnd 31325  df-ogrp 31326  df-orng 31496  df-ofld 31497  df-qqh 31923  df-rrh 31945  df-rrext 31949  df-esum 31996  df-siga 32077  df-sigagen 32107  df-meas 32164  df-mbfm 32218  df-sitg 32297  df-sitm 32298
This theorem is referenced by:  sitmf  32319
  Copyright terms: Public domain W3C validator