| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq2 5652 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: xpindir 5788 xpssres 5978 difxp1 6126 xpima 6143 xpexgALT 7939 curry1 8060 fparlem3 8070 fparlem4 8071 xp1en 9004 djuunxp 9850 dju1dif 10102 djuassen 10108 xpdjuen 10109 infdju1 10119 yonedalem3b 18216 yonedalem3 18217 pws1 20210 pwsmgp 20212 xkoinjcn 23550 imasdsf1olem 24237 df0op2 31654 ho01i 31730 nmop0h 31893 mbfmcst 34223 0rrv 34415 cvmlift2lem12 35274 zrdivrng 37920 funcsetc1o 49459 |
| Copyright terms: Public domain | W3C validator |