| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq2 5635 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 × cxp 5612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5152 df-xp 5620 |
| This theorem is referenced by: xpindir 5773 xpssres 5966 difxp1 6112 xpima 6129 xpexgALT 7913 curry1 8034 fparlem3 8044 fparlem4 8045 xp1en 8976 djuunxp 9814 dju1dif 10064 djuassen 10070 xpdjuen 10071 infdju1 10081 yonedalem3b 18185 yonedalem3 18186 pws1 20243 pwsmgp 20245 xkoinjcn 23602 imasdsf1olem 24288 df0op2 31732 ho01i 31808 nmop0h 31971 mbfmcst 34272 0rrv 34464 cvmlift2lem12 35358 zrdivrng 38001 funcsetc1o 49537 |
| Copyright terms: Public domain | W3C validator |