| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq2 5640 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5155 df-xp 5625 |
| This theorem is referenced by: xpindir 5777 xpssres 5969 difxp1 6114 xpima 6131 xpexgALT 7916 curry1 8037 fparlem3 8047 fparlem4 8048 xp1en 8980 djuunxp 9817 dju1dif 10067 djuassen 10073 xpdjuen 10074 infdju1 10084 yonedalem3b 18185 yonedalem3 18186 pws1 20210 pwsmgp 20212 xkoinjcn 23572 imasdsf1olem 24259 df0op2 31696 ho01i 31772 nmop0h 31935 mbfmcst 34227 0rrv 34419 cvmlift2lem12 35287 zrdivrng 37933 funcsetc1o 49482 |
| Copyright terms: Public domain | W3C validator |