MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpeq2i Structured version   Visualization version   GIF version

Theorem xpeq2i 5727
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
xpeq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
xpeq2i (𝐶 × 𝐴) = (𝐶 × 𝐵)

Proof of Theorem xpeq2i
StepHypRef Expression
1 xpeq1i.1 . 2 𝐴 = 𝐵
2 xpeq2 5721 . 2 (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵))
31, 2ax-mp 5 1 (𝐶 × 𝐴) = (𝐶 × 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   × cxp 5698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-opab 5229  df-xp 5706
This theorem is referenced by:  xpindir  5859  xpssres  6047  difxp1  6196  xpima  6213  xpexgALT  8022  curry1  8145  fparlem3  8155  fparlem4  8156  xp1en  9123  djuunxp  9990  dju1dif  10242  djuassen  10248  xpdjuen  10249  infdju1  10259  yonedalem3b  18349  yonedalem3  18350  pws1  20348  pwsmgp  20350  xkoinjcn  23716  imasdsf1olem  24404  df0op2  31784  ho01i  31860  nmop0h  32023  mbfmcst  34224  0rrv  34416  cvmlift2lem12  35282  zrdivrng  37913
  Copyright terms: Public domain W3C validator