![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq2 5710 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-opab 5211 df-xp 5695 |
This theorem is referenced by: xpindir 5848 xpssres 6038 difxp1 6187 xpima 6204 xpexgALT 8005 curry1 8128 fparlem3 8138 fparlem4 8139 xp1en 9096 djuunxp 9959 dju1dif 10211 djuassen 10217 xpdjuen 10218 infdju1 10228 yonedalem3b 18336 yonedalem3 18337 pws1 20339 pwsmgp 20341 xkoinjcn 23711 imasdsf1olem 24399 df0op2 31781 ho01i 31857 nmop0h 32020 mbfmcst 34241 0rrv 34433 cvmlift2lem12 35299 zrdivrng 37940 |
Copyright terms: Public domain | W3C validator |