Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq2 5601 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-xp 5586 |
This theorem is referenced by: xpindir 5732 xpssres 5917 difxp1 6057 xpima 6074 xpexgALT 7797 curry1 7915 fparlem3 7925 fparlem4 7926 xp1en 8798 djuunxp 9610 dju1dif 9859 djuassen 9865 xpdjuen 9866 infdju1 9876 yonedalem3b 17913 yonedalem3 17914 pws1 19770 pwsmgp 19772 xkoinjcn 22746 imasdsf1olem 23434 df0op2 30015 ho01i 30091 nmop0h 30254 mbfmcst 32126 0rrv 32318 cvmlift2lem12 33176 zrdivrng 36038 |
Copyright terms: Public domain | W3C validator |