| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq2 5659 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-xp 5644 |
| This theorem is referenced by: xpindir 5798 xpssres 5989 difxp1 6138 xpima 6155 xpexgALT 7960 curry1 8083 fparlem3 8093 fparlem4 8094 xp1en 9027 djuunxp 9874 dju1dif 10126 djuassen 10132 xpdjuen 10133 infdju1 10143 yonedalem3b 18240 yonedalem3 18241 pws1 20234 pwsmgp 20236 xkoinjcn 23574 imasdsf1olem 24261 df0op2 31681 ho01i 31757 nmop0h 31920 mbfmcst 34250 0rrv 34442 cvmlift2lem12 35301 zrdivrng 37947 funcsetc1o 49486 |
| Copyright terms: Public domain | W3C validator |