| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq2 5662 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-xp 5647 |
| This theorem is referenced by: xpindir 5801 xpssres 5992 difxp1 6141 xpima 6158 xpexgALT 7963 curry1 8086 fparlem3 8096 fparlem4 8097 xp1en 9031 djuunxp 9881 dju1dif 10133 djuassen 10139 xpdjuen 10140 infdju1 10150 yonedalem3b 18247 yonedalem3 18248 pws1 20241 pwsmgp 20243 xkoinjcn 23581 imasdsf1olem 24268 df0op2 31688 ho01i 31764 nmop0h 31927 mbfmcst 34257 0rrv 34449 cvmlift2lem12 35308 zrdivrng 37954 funcsetc1o 49490 |
| Copyright terms: Public domain | W3C validator |