| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
| Ref | Expression |
|---|---|
| xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | xpeq2 5675 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 × cxp 5652 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-opab 5182 df-xp 5660 |
| This theorem is referenced by: xpindir 5814 xpssres 6005 difxp1 6154 xpima 6171 xpexgALT 7980 curry1 8103 fparlem3 8113 fparlem4 8114 xp1en 9071 djuunxp 9935 dju1dif 10187 djuassen 10193 xpdjuen 10194 infdju1 10204 yonedalem3b 18291 yonedalem3 18292 pws1 20285 pwsmgp 20287 xkoinjcn 23625 imasdsf1olem 24312 df0op2 31733 ho01i 31809 nmop0h 31972 mbfmcst 34291 0rrv 34483 cvmlift2lem12 35336 zrdivrng 37977 funcsetc1o 49382 |
| Copyright terms: Public domain | W3C validator |