![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpeq2i | Structured version Visualization version GIF version |
Description: Equality inference for Cartesian product. (Contributed by NM, 21-Dec-2008.) |
Ref | Expression |
---|---|
xpeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
xpeq2i | ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | xpeq2 5721 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 × 𝐴) = (𝐶 × 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 × 𝐴) = (𝐶 × 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-xp 5706 |
This theorem is referenced by: xpindir 5859 xpssres 6047 difxp1 6196 xpima 6213 xpexgALT 8022 curry1 8145 fparlem3 8155 fparlem4 8156 xp1en 9123 djuunxp 9990 dju1dif 10242 djuassen 10248 xpdjuen 10249 infdju1 10259 yonedalem3b 18349 yonedalem3 18350 pws1 20348 pwsmgp 20350 xkoinjcn 23716 imasdsf1olem 24404 df0op2 31784 ho01i 31860 nmop0h 32023 mbfmcst 34224 0rrv 34416 cvmlift2lem12 35282 zrdivrng 37913 |
Copyright terms: Public domain | W3C validator |