MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvssrndm Structured version   Visualization version   GIF version

Theorem cnvssrndm 6247
Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
cnvssrndm 𝐴 ⊆ (ran 𝐴 × dom 𝐴)

Proof of Theorem cnvssrndm
StepHypRef Expression
1 relcnv 6078 . . 3 Rel 𝐴
2 relssdmrn 6244 . . 3 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
31, 2ax-mp 5 . 2 𝐴 ⊆ (dom 𝐴 × ran 𝐴)
4 df-rn 5652 . . 3 ran 𝐴 = dom 𝐴
5 dfdm4 5862 . . 3 dom 𝐴 = ran 𝐴
64, 5xpeq12i 5669 . 2 (ran 𝐴 × dom 𝐴) = (dom 𝐴 × ran 𝐴)
73, 6sseqtrri 3999 1 𝐴 ⊆ (ran 𝐴 × dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wss 3917   × cxp 5639  ccnv 5640  dom cdm 5641  ran crn 5642  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652
This theorem is referenced by:  wuncnv  10690  fcnvgreu  32604  trclubgNEW  43614
  Copyright terms: Public domain W3C validator