| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvssrndm | Structured version Visualization version GIF version | ||
| Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| cnvssrndm | ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6096 | . . 3 ⊢ Rel ◡𝐴 | |
| 2 | relssdmrn 6262 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
| 4 | df-rn 5670 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | dfdm4 5880 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
| 6 | 4, 5 | xpeq12i 5687 | . 2 ⊢ (ran 𝐴 × dom 𝐴) = (dom ◡𝐴 × ran ◡𝐴) |
| 7 | 3, 6 | sseqtrri 4013 | 1 ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ⊆ wss 3931 × cxp 5657 ◡ccnv 5658 dom cdm 5659 ran crn 5660 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-xp 5665 df-rel 5666 df-cnv 5667 df-dm 5669 df-rn 5670 |
| This theorem is referenced by: wuncnv 10749 fcnvgreu 32656 trclubgNEW 43609 |
| Copyright terms: Public domain | W3C validator |