Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvssrndm | Structured version Visualization version GIF version |
Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
cnvssrndm | ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6022 | . . 3 ⊢ Rel ◡𝐴 | |
2 | relssdmrn 6186 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
4 | df-rn 5611 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | dfdm4 5817 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | 4, 5 | xpeq12i 5628 | . 2 ⊢ (ran 𝐴 × dom 𝐴) = (dom ◡𝐴 × ran ◡𝐴) |
7 | 3, 6 | sseqtrri 3963 | 1 ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3892 × cxp 5598 ◡ccnv 5599 dom cdm 5600 ran crn 5601 Rel wrel 5605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-xp 5606 df-rel 5607 df-cnv 5608 df-dm 5610 df-rn 5611 |
This theorem is referenced by: wuncnv 10536 fcnvgreu 31059 trclubgNEW 41439 |
Copyright terms: Public domain | W3C validator |