MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvssrndm Structured version   Visualization version   GIF version

Theorem cnvssrndm 6302
Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
cnvssrndm 𝐴 ⊆ (ran 𝐴 × dom 𝐴)

Proof of Theorem cnvssrndm
StepHypRef Expression
1 relcnv 6134 . . 3 Rel 𝐴
2 relssdmrn 6299 . . 3 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
31, 2ax-mp 5 . 2 𝐴 ⊆ (dom 𝐴 × ran 𝐴)
4 df-rn 5711 . . 3 ran 𝐴 = dom 𝐴
5 dfdm4 5920 . . 3 dom 𝐴 = ran 𝐴
64, 5xpeq12i 5728 . 2 (ran 𝐴 × dom 𝐴) = (dom 𝐴 × ran 𝐴)
73, 6sseqtrri 4046 1 𝐴 ⊆ (ran 𝐴 × dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wss 3976   × cxp 5698  ccnv 5699  dom cdm 5700  ran crn 5701  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711
This theorem is referenced by:  wuncnv  10799  fcnvgreu  32691  trclubgNEW  43580
  Copyright terms: Public domain W3C validator