MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvssrndm Structured version   Visualization version   GIF version

Theorem cnvssrndm 6219
Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.)
Assertion
Ref Expression
cnvssrndm 𝐴 ⊆ (ran 𝐴 × dom 𝐴)

Proof of Theorem cnvssrndm
StepHypRef Expression
1 relcnv 6055 . . 3 Rel 𝐴
2 relssdmrn 6217 . . 3 (Rel 𝐴𝐴 ⊆ (dom 𝐴 × ran 𝐴))
31, 2ax-mp 5 . 2 𝐴 ⊆ (dom 𝐴 × ran 𝐴)
4 df-rn 5630 . . 3 ran 𝐴 = dom 𝐴
5 dfdm4 5838 . . 3 dom 𝐴 = ran 𝐴
64, 5xpeq12i 5647 . 2 (ran 𝐴 × dom 𝐴) = (dom 𝐴 × ran 𝐴)
73, 6sseqtrri 3985 1 𝐴 ⊆ (ran 𝐴 × dom 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wss 3903   × cxp 5617  ccnv 5618  dom cdm 5619  ran crn 5620  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630
This theorem is referenced by:  wuncnv  10624  fcnvgreu  32624  trclubgNEW  43611
  Copyright terms: Public domain W3C validator