Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvssrndm | Structured version Visualization version GIF version |
Description: The converse is a subset of the cartesian product of range and domain. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
cnvssrndm | ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6009 | . . 3 ⊢ Rel ◡𝐴 | |
2 | relssdmrn 6169 | . . 3 ⊢ (Rel ◡𝐴 → ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ◡𝐴 ⊆ (dom ◡𝐴 × ran ◡𝐴) |
4 | df-rn 5599 | . . 3 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | dfdm4 5801 | . . 3 ⊢ dom 𝐴 = ran ◡𝐴 | |
6 | 4, 5 | xpeq12i 5616 | . 2 ⊢ (ran 𝐴 × dom 𝐴) = (dom ◡𝐴 × ran ◡𝐴) |
7 | 3, 6 | sseqtrri 3962 | 1 ⊢ ◡𝐴 ⊆ (ran 𝐴 × dom 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ⊆ wss 3891 × cxp 5586 ◡ccnv 5587 dom cdm 5588 ran crn 5589 Rel wrel 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-dm 5598 df-rn 5599 |
This theorem is referenced by: wuncnv 10470 fcnvgreu 30989 trclubgNEW 41179 |
Copyright terms: Public domain | W3C validator |