Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq1d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq1 5604 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2069 df-clab 2717 df-cleq 2731 df-clel 2817 df-opab 5138 df-xp 5596 |
This theorem is referenced by: csbres 5897 xpssres 5931 curry1 7953 fparlem3 7963 fparlem4 7964 ixpsnf1o 8735 xpfi 9094 dfac5lem3 9890 dfac5lem4 9891 hashxplem 14157 repsw1 14505 subgga 18915 gasubg 18917 sylow2blem2 19235 psrval 21127 mpfrcl 21304 evlsval 21305 mamufval 21543 mat1dimscm 21633 mdetunilem3 21772 mdetunilem4 21773 mdetunilem9 21778 txindislem 22793 txtube 22800 txcmplem1 22801 txhaus 22807 xkoinjcn 22847 pt1hmeo 22966 tsmsxplem1 23313 tsmsxplem2 23314 cnmpopc 24100 dchrval 26391 axlowdimlem15 27333 axlowdim 27338 0ofval 29158 hashxpe 31136 esumcvg 32063 sxbrsigalem0 32247 sxbrsigalem3 32248 sxbrsigalem2 32262 ofcccat 32531 lpadval 32665 lpadlem3 32667 mexval2 33474 xpord2pred 33801 xpord3pred 33807 naddcllem 33840 csbfinxpg 35568 poimirlem1 35787 poimirlem2 35788 poimirlem3 35789 poimirlem4 35790 poimirlem5 35791 poimirlem6 35792 poimirlem7 35793 poimirlem8 35794 poimirlem10 35796 poimirlem11 35797 poimirlem12 35798 poimirlem15 35801 poimirlem16 35802 poimirlem17 35803 poimirlem18 35804 poimirlem19 35805 poimirlem20 35806 poimirlem21 35807 poimirlem22 35808 poimirlem23 35809 poimirlem24 35810 poimirlem26 35812 poimirlem27 35813 poimirlem28 35814 poimirlem32 35818 sdclem1 35910 ismrer1 36005 ldualset 37146 dibval 39163 dibval3N 39167 dib0 39185 dihwN 39310 hdmap1fval 39817 fsuppssind 40289 mzpclval 40554 mendval 41015 prstcval 46356 prstchomval 46366 |
Copyright terms: Public domain | W3C validator |