Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq1d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq1 5565 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 × cxp 5549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-opab 5116 df-xp 5557 |
This theorem is referenced by: csbres 5854 xpssres 5888 curry1 7872 fparlem3 7882 fparlem4 7883 ixpsnf1o 8619 xpfi 8942 dfac5lem3 9739 dfac5lem4 9740 hashxplem 14000 repsw1 14348 subgga 18694 gasubg 18696 sylow2blem2 19010 psrval 20874 mpfrcl 21045 evlsval 21046 mamufval 21284 mat1dimscm 21372 mdetunilem3 21511 mdetunilem4 21512 mdetunilem9 21517 txindislem 22530 txtube 22537 txcmplem1 22538 txhaus 22544 xkoinjcn 22584 pt1hmeo 22703 tsmsxplem1 23050 tsmsxplem2 23051 cnmpopc 23825 dchrval 26115 axlowdimlem15 27047 axlowdim 27052 0ofval 28868 hashxpe 30847 esumcvg 31766 sxbrsigalem0 31950 sxbrsigalem3 31951 sxbrsigalem2 31965 ofcccat 32234 lpadval 32368 lpadlem3 32370 mexval2 33178 xpord2pred 33529 xpord3pred 33535 naddcllem 33568 csbfinxpg 35296 poimirlem1 35515 poimirlem2 35516 poimirlem3 35517 poimirlem4 35518 poimirlem5 35519 poimirlem6 35520 poimirlem7 35521 poimirlem8 35522 poimirlem10 35524 poimirlem11 35525 poimirlem12 35526 poimirlem15 35529 poimirlem16 35530 poimirlem17 35531 poimirlem18 35532 poimirlem19 35533 poimirlem20 35534 poimirlem21 35535 poimirlem22 35536 poimirlem23 35537 poimirlem24 35538 poimirlem26 35540 poimirlem27 35541 poimirlem28 35542 poimirlem32 35546 sdclem1 35638 ismrer1 35733 ldualset 36876 dibval 38893 dibval3N 38897 dib0 38915 dihwN 39040 hdmap1fval 39547 fsuppssind 39992 mzpclval 40250 mendval 40711 prstcval 46018 prstchomval 46026 |
Copyright terms: Public domain | W3C validator |