Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq1d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq1 5622 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 × cxp 5606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-opab 5150 df-xp 5614 |
This theorem is referenced by: csbres 5914 xpssres 5948 curry1 7991 fparlem3 8001 fparlem4 8002 ixpsnf1o 8776 xpfiOLD 9162 dfac5lem3 9961 dfac5lem4 9962 hashxplem 14227 repsw1 14575 subgga 18982 gasubg 18984 sylow2blem2 19302 psrval 21201 mpfrcl 21378 evlsval 21379 mamufval 21617 mat1dimscm 21707 mdetunilem3 21846 mdetunilem4 21847 mdetunilem9 21852 txindislem 22867 txtube 22874 txcmplem1 22875 txhaus 22881 xkoinjcn 22921 pt1hmeo 23040 tsmsxplem1 23387 tsmsxplem2 23388 cnmpopc 24174 dchrval 26465 axlowdimlem15 27460 axlowdim 27465 0ofval 29285 hashxpe 31262 esumcvg 32194 sxbrsigalem0 32378 sxbrsigalem3 32379 sxbrsigalem2 32393 ofcccat 32662 lpadval 32796 lpadlem3 32798 mexval2 33604 xpord2pred 33922 xpord3pred 33928 naddcllem 33958 csbfinxpg 35631 poimirlem1 35850 poimirlem2 35851 poimirlem3 35852 poimirlem4 35853 poimirlem5 35854 poimirlem6 35855 poimirlem7 35856 poimirlem8 35857 poimirlem10 35859 poimirlem11 35860 poimirlem12 35861 poimirlem15 35864 poimirlem16 35865 poimirlem17 35866 poimirlem18 35867 poimirlem19 35868 poimirlem20 35869 poimirlem21 35870 poimirlem22 35871 poimirlem23 35872 poimirlem24 35873 poimirlem26 35875 poimirlem27 35876 poimirlem28 35877 poimirlem32 35881 sdclem1 35973 ismrer1 36068 ldualset 37359 dibval 39377 dibval3N 39381 dib0 39399 dihwN 39524 hdmap1fval 40031 fsuppssind 40498 mzpclval 40763 mendval 41225 prstcval 46610 prstchomval 46620 |
Copyright terms: Public domain | W3C validator |