Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xpeq1d | Structured version Visualization version GIF version |
Description: Equality deduction for Cartesian product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
Ref | Expression |
---|---|
xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
xpeq1d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | xpeq1 5594 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 × cxp 5578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-xp 5586 |
This theorem is referenced by: csbres 5883 xpssres 5917 curry1 7915 fparlem3 7925 fparlem4 7926 ixpsnf1o 8684 xpfi 9015 dfac5lem3 9812 dfac5lem4 9813 hashxplem 14076 repsw1 14424 subgga 18821 gasubg 18823 sylow2blem2 19141 psrval 21028 mpfrcl 21205 evlsval 21206 mamufval 21444 mat1dimscm 21532 mdetunilem3 21671 mdetunilem4 21672 mdetunilem9 21677 txindislem 22692 txtube 22699 txcmplem1 22700 txhaus 22706 xkoinjcn 22746 pt1hmeo 22865 tsmsxplem1 23212 tsmsxplem2 23213 cnmpopc 23997 dchrval 26287 axlowdimlem15 27227 axlowdim 27232 0ofval 29050 hashxpe 31029 esumcvg 31954 sxbrsigalem0 32138 sxbrsigalem3 32139 sxbrsigalem2 32153 ofcccat 32422 lpadval 32556 lpadlem3 32558 mexval2 33365 xpord2pred 33719 xpord3pred 33725 naddcllem 33758 csbfinxpg 35486 poimirlem1 35705 poimirlem2 35706 poimirlem3 35707 poimirlem4 35708 poimirlem5 35709 poimirlem6 35710 poimirlem7 35711 poimirlem8 35712 poimirlem10 35714 poimirlem11 35715 poimirlem12 35716 poimirlem15 35719 poimirlem16 35720 poimirlem17 35721 poimirlem18 35722 poimirlem19 35723 poimirlem20 35724 poimirlem21 35725 poimirlem22 35726 poimirlem23 35727 poimirlem24 35728 poimirlem26 35730 poimirlem27 35731 poimirlem28 35732 poimirlem32 35736 sdclem1 35828 ismrer1 35923 ldualset 37066 dibval 39083 dibval3N 39087 dib0 39105 dihwN 39230 hdmap1fval 39737 fsuppssind 40205 mzpclval 40463 mendval 40924 prstcval 46233 prstchomval 46241 |
Copyright terms: Public domain | W3C validator |