MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjpm Structured version   Visualization version   GIF version

Theorem pjpm 21642
Description: The projection map is a partial function from subspaces of the pre-Hilbert space to total operators. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjpm.v 𝑉 = (Base‘𝑊)
pjpm.l 𝐿 = (LSubSp‘𝑊)
pjpm.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjpm 𝐾 ∈ ((𝑉m 𝑉) ↑pm 𝐿)

Proof of Theorem pjpm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pjpm.v . . . . 5 𝑉 = (Base‘𝑊)
2 pjpm.l . . . . 5 𝐿 = (LSubSp‘𝑊)
3 eqid 2728 . . . . 5 (ocv‘𝑊) = (ocv‘𝑊)
4 eqid 2728 . . . . 5 (proj1𝑊) = (proj1𝑊)
5 pjpm.k . . . . 5 𝐾 = (proj‘𝑊)
61, 2, 3, 4, 5pjfval 21640 . . . 4 𝐾 = ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉m 𝑉)))
7 inss1 4229 . . . 4 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
86, 7eqsstri 4014 . . 3 𝐾 ⊆ (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
9 funmpt 6591 . . 3 Fun (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
10 funss 6572 . . 3 (𝐾 ⊆ (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) → (Fun (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) → Fun 𝐾))
118, 9, 10mp2 9 . 2 Fun 𝐾
12 eqid 2728 . . . . . 6 (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) = (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
13 ovexd 7455 . . . . . 6 (𝑥𝐿 → (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)) ∈ V)
1412, 13fmpti 7122 . . . . 5 (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))):𝐿⟶V
15 fssxp 6751 . . . . 5 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))):𝐿⟶V → (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ⊆ (𝐿 × V))
16 ssrin 4234 . . . . 5 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ⊆ (𝐿 × V) → ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉))))
1714, 15, 16mp2b 10 . . . 4 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉)))
186, 17eqsstri 4014 . . 3 𝐾 ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉)))
19 inxp 5834 . . . 4 ((𝐿 × V) ∩ (V × (𝑉m 𝑉))) = ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉)))
20 inv1 4395 . . . . 5 (𝐿 ∩ V) = 𝐿
21 incom 4201 . . . . . 6 (V ∩ (𝑉m 𝑉)) = ((𝑉m 𝑉) ∩ V)
22 inv1 4395 . . . . . 6 ((𝑉m 𝑉) ∩ V) = (𝑉m 𝑉)
2321, 22eqtri 2756 . . . . 5 (V ∩ (𝑉m 𝑉)) = (𝑉m 𝑉)
2420, 23xpeq12i 5706 . . . 4 ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉))) = (𝐿 × (𝑉m 𝑉))
2519, 24eqtri 2756 . . 3 ((𝐿 × V) ∩ (V × (𝑉m 𝑉))) = (𝐿 × (𝑉m 𝑉))
2618, 25sseqtri 4016 . 2 𝐾 ⊆ (𝐿 × (𝑉m 𝑉))
27 ovex 7453 . . 3 (𝑉m 𝑉) ∈ V
282fvexi 6911 . . 3 𝐿 ∈ V
2927, 28elpm 8892 . 2 (𝐾 ∈ ((𝑉m 𝑉) ↑pm 𝐿) ↔ (Fun 𝐾𝐾 ⊆ (𝐿 × (𝑉m 𝑉))))
3011, 26, 29mpbir2an 710 1 𝐾 ∈ ((𝑉m 𝑉) ↑pm 𝐿)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  wcel 2099  Vcvv 3471  cin 3946  wss 3947  cmpt 5231   × cxp 5676  Fun wfun 6542  wf 6544  cfv 6548  (class class class)co 7420  m cmap 8845  pm cpm 8846  Basecbs 17180  proj1cpj1 19590  LSubSpclss 20815  ocvcocv 21592  projcpj 21634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-fv 6556  df-ov 7423  df-oprab 7424  df-mpo 7425  df-pm 8848  df-pj 21637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator