MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjpm Structured version   Visualization version   GIF version

Theorem pjpm 21617
Description: The projection map is a partial function from subspaces of the pre-Hilbert space to total operators. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjpm.v 𝑉 = (Base‘𝑊)
pjpm.l 𝐿 = (LSubSp‘𝑊)
pjpm.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjpm 𝐾 ∈ ((𝑉m 𝑉) ↑pm 𝐿)

Proof of Theorem pjpm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pjpm.v . . . . 5 𝑉 = (Base‘𝑊)
2 pjpm.l . . . . 5 𝐿 = (LSubSp‘𝑊)
3 eqid 2729 . . . . 5 (ocv‘𝑊) = (ocv‘𝑊)
4 eqid 2729 . . . . 5 (proj1𝑊) = (proj1𝑊)
5 pjpm.k . . . . 5 𝐾 = (proj‘𝑊)
61, 2, 3, 4, 5pjfval 21615 . . . 4 𝐾 = ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉m 𝑉)))
7 inss1 4200 . . . 4 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
86, 7eqsstri 3993 . . 3 𝐾 ⊆ (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
9 funmpt 6554 . . 3 Fun (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
10 funss 6535 . . 3 (𝐾 ⊆ (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) → (Fun (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) → Fun 𝐾))
118, 9, 10mp2 9 . 2 Fun 𝐾
12 eqid 2729 . . . . . 6 (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) = (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)))
13 ovexd 7422 . . . . . 6 (𝑥𝐿 → (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥)) ∈ V)
1412, 13fmpti 7084 . . . . 5 (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))):𝐿⟶V
15 fssxp 6715 . . . . 5 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))):𝐿⟶V → (𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ⊆ (𝐿 × V))
16 ssrin 4205 . . . . 5 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ⊆ (𝐿 × V) → ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉))))
1714, 15, 16mp2b 10 . . . 4 ((𝑥𝐿 ↦ (𝑥(proj1𝑊)((ocv‘𝑊)‘𝑥))) ∩ (V × (𝑉m 𝑉))) ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉)))
186, 17eqsstri 3993 . . 3 𝐾 ⊆ ((𝐿 × V) ∩ (V × (𝑉m 𝑉)))
19 inxp 5795 . . . 4 ((𝐿 × V) ∩ (V × (𝑉m 𝑉))) = ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉)))
20 inv1 4361 . . . . 5 (𝐿 ∩ V) = 𝐿
21 incom 4172 . . . . . 6 (V ∩ (𝑉m 𝑉)) = ((𝑉m 𝑉) ∩ V)
22 inv1 4361 . . . . . 6 ((𝑉m 𝑉) ∩ V) = (𝑉m 𝑉)
2321, 22eqtri 2752 . . . . 5 (V ∩ (𝑉m 𝑉)) = (𝑉m 𝑉)
2420, 23xpeq12i 5666 . . . 4 ((𝐿 ∩ V) × (V ∩ (𝑉m 𝑉))) = (𝐿 × (𝑉m 𝑉))
2519, 24eqtri 2752 . . 3 ((𝐿 × V) ∩ (V × (𝑉m 𝑉))) = (𝐿 × (𝑉m 𝑉))
2618, 25sseqtri 3995 . 2 𝐾 ⊆ (𝐿 × (𝑉m 𝑉))
27 ovex 7420 . . 3 (𝑉m 𝑉) ∈ V
282fvexi 6872 . . 3 𝐿 ∈ V
2927, 28elpm 8846 . 2 (𝐾 ∈ ((𝑉m 𝑉) ↑pm 𝐿) ↔ (Fun 𝐾𝐾 ⊆ (𝐿 × (𝑉m 𝑉))))
3011, 26, 29mpbir2an 711 1 𝐾 ∈ ((𝑉m 𝑉) ↑pm 𝐿)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3447  cin 3913  wss 3914  cmpt 5188   × cxp 5636  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  pm cpm 8800  Basecbs 17179  proj1cpj1 19565  LSubSpclss 20837  ocvcocv 21569  projcpj 21609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pm 8802  df-pj 21612
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator