MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txbasval Structured version   Visualization version   GIF version

Theorem txbasval 23493
Description: It is sufficient to consider products of the bases for the topologies in the topological product. (Contributed by Mario Carneiro, 25-Aug-2014.)
Assertion
Ref Expression
txbasval ((𝑅𝑉𝑆𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆))

Proof of Theorem txbasval
Dummy variables 𝑥 𝑦 𝑚 𝑛 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))
21txval 23451 . 2 ((𝑅𝑉𝑆𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
3 bastg 22853 . . . . . . 7 (𝑅𝑉𝑅 ⊆ (topGen‘𝑅))
4 bastg 22853 . . . . . . 7 (𝑆𝑊𝑆 ⊆ (topGen‘𝑆))
5 resmpo 7509 . . . . . . 7 ((𝑅 ⊆ (topGen‘𝑅) ∧ 𝑆 ⊆ (topGen‘𝑆)) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
63, 4, 5syl2an 596 . . . . . 6 ((𝑅𝑉𝑆𝑊) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))
7 resss 5972 . . . . . 6 ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))
86, 7eqsstrrdi 3992 . . . . 5 ((𝑅𝑉𝑆𝑊) → (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))
9 rnss 5903 . . . . 5 ((𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))
108, 9syl 17 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))
11 eltg3 22849 . . . . . . . . . 10 (𝑅𝑉 → (𝑢 ∈ (topGen‘𝑅) ↔ ∃𝑚(𝑚𝑅𝑢 = 𝑚)))
12 eltg3 22849 . . . . . . . . . 10 (𝑆𝑊 → (𝑣 ∈ (topGen‘𝑆) ↔ ∃𝑛(𝑛𝑆𝑣 = 𝑛)))
1311, 12bi2anan9 638 . . . . . . . . 9 ((𝑅𝑉𝑆𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) ↔ (∃𝑚(𝑚𝑅𝑢 = 𝑚) ∧ ∃𝑛(𝑛𝑆𝑣 = 𝑛))))
14 exdistrv 1955 . . . . . . . . . 10 (∃𝑚𝑛((𝑚𝑅𝑢 = 𝑚) ∧ (𝑛𝑆𝑣 = 𝑛)) ↔ (∃𝑚(𝑚𝑅𝑢 = 𝑚) ∧ ∃𝑛(𝑛𝑆𝑣 = 𝑛)))
15 an4 656 . . . . . . . . . . . 12 (((𝑚𝑅𝑢 = 𝑚) ∧ (𝑛𝑆𝑣 = 𝑛)) ↔ ((𝑚𝑅𝑛𝑆) ∧ (𝑢 = 𝑚𝑣 = 𝑛)))
16 uniiun 5022 . . . . . . . . . . . . . . . . 17 𝑚 = 𝑥𝑚 𝑥
17 uniiun 5022 . . . . . . . . . . . . . . . . 17 𝑛 = 𝑦𝑛 𝑦
1816, 17xpeq12i 5666 . . . . . . . . . . . . . . . 16 ( 𝑚 × 𝑛) = ( 𝑥𝑚 𝑥 × 𝑦𝑛 𝑦)
19 xpiundir 5710 . . . . . . . . . . . . . . . 16 ( 𝑥𝑚 𝑥 × 𝑦𝑛 𝑦) = 𝑥𝑚 (𝑥 × 𝑦𝑛 𝑦)
20 xpiundi 5709 . . . . . . . . . . . . . . . . . 18 (𝑥 × 𝑦𝑛 𝑦) = 𝑦𝑛 (𝑥 × 𝑦)
2120a1i 11 . . . . . . . . . . . . . . . . 17 (𝑥𝑚 → (𝑥 × 𝑦𝑛 𝑦) = 𝑦𝑛 (𝑥 × 𝑦))
2221iuneq2i 4977 . . . . . . . . . . . . . . . 16 𝑥𝑚 (𝑥 × 𝑦𝑛 𝑦) = 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦)
2318, 19, 223eqtri 2756 . . . . . . . . . . . . . . 15 ( 𝑚 × 𝑛) = 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦)
24 ovex 7420 . . . . . . . . . . . . . . . . 17 (𝑅 ×t 𝑆) ∈ V
25 ssel2 3941 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑚𝑅𝑥𝑚) → 𝑥𝑅)
26 ssel2 3941 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑛𝑆𝑦𝑛) → 𝑦𝑆)
2725, 26anim12i 613 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑚𝑅𝑥𝑚) ∧ (𝑛𝑆𝑦𝑛)) → (𝑥𝑅𝑦𝑆))
2827an4s 660 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑚𝑅𝑛𝑆) ∧ (𝑥𝑚𝑦𝑛)) → (𝑥𝑅𝑦𝑆))
29 txopn 23489 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑅𝑉𝑆𝑊) ∧ (𝑥𝑅𝑦𝑆)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
3028, 29sylan2 593 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑅𝑉𝑆𝑊) ∧ ((𝑚𝑅𝑛𝑆) ∧ (𝑥𝑚𝑦𝑛))) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
3130anassrs 467 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ (𝑥𝑚𝑦𝑛)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
3231anassrs 467 . . . . . . . . . . . . . . . . . . . . 21 (((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) ∧ 𝑦𝑛) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
3332ralrimiva 3125 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) → ∀𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
34 tgiun 22866 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → 𝑦𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆)))
3524, 33, 34sylancr 587 . . . . . . . . . . . . . . . . . . 19 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) → 𝑦𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆)))
361txbasex 23453 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑅𝑉𝑆𝑊) → ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V)
37 tgidm 22867 . . . . . . . . . . . . . . . . . . . . . . 23 (ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ∈ V → (topGen‘(topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
3836, 37syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅𝑉𝑆𝑊) → (topGen‘(topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
392fveq2d 6862 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑅𝑉𝑆𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (topGen‘(topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))))
4038, 39, 23eqtr4d 2774 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅𝑉𝑆𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆))
4140adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆))
4241adantr 480 . . . . . . . . . . . . . . . . . . 19 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆))
4335, 42eleqtrd 2830 . . . . . . . . . . . . . . . . . 18 ((((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) ∧ 𝑥𝑚) → 𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
4443ralrimiva 3125 . . . . . . . . . . . . . . . . 17 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → ∀𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
45 tgiun 22866 . . . . . . . . . . . . . . . . 17 (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆)))
4624, 44, 45sylancr 587 . . . . . . . . . . . . . . . 16 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆)))
4746, 41eleqtrd 2830 . . . . . . . . . . . . . . 15 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → 𝑥𝑚 𝑦𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆))
4823, 47eqeltrid 2832 . . . . . . . . . . . . . 14 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → ( 𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆))
49 xpeq12 5663 . . . . . . . . . . . . . . 15 ((𝑢 = 𝑚𝑣 = 𝑛) → (𝑢 × 𝑣) = ( 𝑚 × 𝑛))
5049eleq1d 2813 . . . . . . . . . . . . . 14 ((𝑢 = 𝑚𝑣 = 𝑛) → ((𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ ( 𝑚 × 𝑛) ∈ (𝑅 ×t 𝑆)))
5148, 50syl5ibrcom 247 . . . . . . . . . . . . 13 (((𝑅𝑉𝑆𝑊) ∧ (𝑚𝑅𝑛𝑆)) → ((𝑢 = 𝑚𝑣 = 𝑛) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5251expimpd 453 . . . . . . . . . . . 12 ((𝑅𝑉𝑆𝑊) → (((𝑚𝑅𝑛𝑆) ∧ (𝑢 = 𝑚𝑣 = 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5315, 52biimtrid 242 . . . . . . . . . . 11 ((𝑅𝑉𝑆𝑊) → (((𝑚𝑅𝑢 = 𝑚) ∧ (𝑛𝑆𝑣 = 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5453exlimdvv 1934 . . . . . . . . . 10 ((𝑅𝑉𝑆𝑊) → (∃𝑚𝑛((𝑚𝑅𝑢 = 𝑚) ∧ (𝑛𝑆𝑣 = 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5514, 54biimtrrid 243 . . . . . . . . 9 ((𝑅𝑉𝑆𝑊) → ((∃𝑚(𝑚𝑅𝑢 = 𝑚) ∧ ∃𝑛(𝑛𝑆𝑣 = 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5613, 55sylbid 240 . . . . . . . 8 ((𝑅𝑉𝑆𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)))
5756ralrimivv 3178 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → ∀𝑢 ∈ (topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))
58 eqid 2729 . . . . . . . 8 (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))
5958fmpo 8047 . . . . . . 7 (∀𝑢 ∈ (topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆))
6057, 59sylib 218 . . . . . 6 ((𝑅𝑉𝑆𝑊) → (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆))
6160frnd 6696 . . . . 5 ((𝑅𝑉𝑆𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (𝑅 ×t 𝑆))
6261, 2sseqtrd 3983 . . . 4 ((𝑅𝑉𝑆𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))))
63 2basgen 22877 . . . 4 ((ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ∧ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣)))) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))))
6410, 62, 63syl2anc 584 . . 3 ((𝑅𝑉𝑆𝑊) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))))
65 fvex 6871 . . . 4 (topGen‘𝑅) ∈ V
66 fvex 6871 . . . 4 (topGen‘𝑆) ∈ V
67 eqid 2729 . . . . 5 ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))
6867txval 23451 . . . 4 (((topGen‘𝑅) ∈ V ∧ (topGen‘𝑆) ∈ V) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))))
6965, 66, 68mp2an 692 . . 3 ((topGen‘𝑅) ×t (topGen‘𝑆)) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))
7064, 69eqtr4di 2782 . 2 ((𝑅𝑉𝑆𝑊) → (topGen‘ran (𝑢𝑅, 𝑣𝑆 ↦ (𝑢 × 𝑣))) = ((topGen‘𝑅) ×t (topGen‘𝑆)))
712, 70eqtr2d 2765 1 ((𝑅𝑉𝑆𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3447  wss 3914   cuni 4871   ciun 4955   × cxp 5636  ran crn 5639  cres 5640  wf 6507  cfv 6511  (class class class)co 7387  cmpo 7389  topGenctg 17400   ×t ctx 23447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-topgen 17406  df-tx 23449
This theorem is referenced by:  tx2ndc  23538  mbfimaopnlem  25556
  Copyright terms: Public domain W3C validator