Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . 3
⊢ ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) |
2 | 1 | txval 22715 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
3 | | bastg 22116 |
. . . . . . 7
⊢ (𝑅 ∈ 𝑉 → 𝑅 ⊆ (topGen‘𝑅)) |
4 | | bastg 22116 |
. . . . . . 7
⊢ (𝑆 ∈ 𝑊 → 𝑆 ⊆ (topGen‘𝑆)) |
5 | | resmpo 7394 |
. . . . . . 7
⊢ ((𝑅 ⊆ (topGen‘𝑅) ∧ 𝑆 ⊆ (topGen‘𝑆)) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
6 | 3, 4, 5 | syl2an 596 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) = (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) |
7 | | resss 5916 |
. . . . . 6
⊢ ((𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ↾ (𝑅 × 𝑆)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) |
8 | 6, 7 | eqsstrrdi 3976 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
9 | | rnss 5848 |
. . . . 5
⊢ ((𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
11 | | eltg3 22112 |
. . . . . . . . . 10
⊢ (𝑅 ∈ 𝑉 → (𝑢 ∈ (topGen‘𝑅) ↔ ∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚))) |
12 | | eltg3 22112 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝑊 → (𝑣 ∈ (topGen‘𝑆) ↔ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛))) |
13 | 11, 12 | bi2anan9 636 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) ↔ (∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)))) |
14 | | exdistrv 1959 |
. . . . . . . . . 10
⊢
(∃𝑚∃𝑛((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) ↔ (∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛))) |
15 | | an4 653 |
. . . . . . . . . . . 12
⊢ (((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) ↔ ((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑢 = ∪ 𝑚 ∧ 𝑣 = ∪ 𝑛))) |
16 | | uniiun 4988 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑚 =
∪ 𝑥 ∈ 𝑚 𝑥 |
17 | | uniiun 4988 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ 𝑛 =
∪ 𝑦 ∈ 𝑛 𝑦 |
18 | 16, 17 | xpeq12i 5617 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑚
× ∪ 𝑛) = (∪
𝑥 ∈ 𝑚 𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) |
19 | | xpiundir 5658 |
. . . . . . . . . . . . . . . 16
⊢ (∪ 𝑥 ∈ 𝑚 𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) = ∪ 𝑥 ∈ 𝑚 (𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) |
20 | | xpiundi 5657 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 × ∪ 𝑦 ∈ 𝑛 𝑦) = ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) |
21 | 20 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑚 → (𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) = ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦)) |
22 | 21 | iuneq2i 4945 |
. . . . . . . . . . . . . . . 16
⊢ ∪ 𝑥 ∈ 𝑚 (𝑥 × ∪
𝑦 ∈ 𝑛 𝑦) = ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) |
23 | 18, 19, 22 | 3eqtri 2770 |
. . . . . . . . . . . . . . 15
⊢ (∪ 𝑚
× ∪ 𝑛) = ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) |
24 | | ovex 7308 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ×t 𝑆) ∈ V |
25 | | ssel2 3916 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑚 ⊆ 𝑅 ∧ 𝑥 ∈ 𝑚) → 𝑥 ∈ 𝑅) |
26 | | ssel2 3916 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑛 ⊆ 𝑆 ∧ 𝑦 ∈ 𝑛) → 𝑦 ∈ 𝑆) |
27 | 25, 26 | anim12i 613 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (((𝑚 ⊆ 𝑅 ∧ 𝑥 ∈ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑦 ∈ 𝑛)) → (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) |
28 | 27 | an4s 657 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛)) → (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) |
29 | | txopn 22753 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
30 | 28, 29 | sylan2 593 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ ((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛))) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
31 | 30 | anassrs 468 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ (𝑥 ∈ 𝑚 ∧ 𝑦 ∈ 𝑛)) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
32 | 31 | anassrs 468 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) ∧ 𝑦 ∈ 𝑛) → (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
33 | 32 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → ∀𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
34 | | tgiun 22129 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
35 | 24, 33, 34 | sylancr 587 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → ∪
𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
36 | 1 | txbasex 22717 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V) |
37 | | tgidm 22130 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ∈ V →
(topGen‘(topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
38 | 36, 37 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘(topGen‘ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) = (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
39 | 2 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (topGen‘(topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))))) |
40 | 38, 39, 2 | 3eqtr4d 2788 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆)) |
41 | 40 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆)) |
42 | 41 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → (topGen‘(𝑅 ×t 𝑆)) = (𝑅 ×t 𝑆)) |
43 | 35, 42 | eleqtrd 2841 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) ∧ 𝑥 ∈ 𝑚) → ∪
𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
44 | 43 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ∀𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
45 | | tgiun 22129 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ×t 𝑆) ∈ V ∧ ∀𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) → ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
46 | 24, 44, 45 | sylancr 587 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (topGen‘(𝑅 ×t 𝑆))) |
47 | 46, 41 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ∪ 𝑥 ∈ 𝑚 ∪ 𝑦 ∈ 𝑛 (𝑥 × 𝑦) ∈ (𝑅 ×t 𝑆)) |
48 | 23, 47 | eqeltrid 2843 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → (∪
𝑚 × ∪ 𝑛)
∈ (𝑅
×t 𝑆)) |
49 | | xpeq12 5614 |
. . . . . . . . . . . . . . 15
⊢ ((𝑢 = ∪
𝑚 ∧ 𝑣 = ∪ 𝑛) → (𝑢 × 𝑣) = (∪ 𝑚 × ∪ 𝑛)) |
50 | 49 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ ((𝑢 = ∪
𝑚 ∧ 𝑣 = ∪ 𝑛) → ((𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ (∪ 𝑚 × ∪ 𝑛)
∈ (𝑅
×t 𝑆))) |
51 | 48, 50 | syl5ibrcom 246 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆)) → ((𝑢 = ∪ 𝑚 ∧ 𝑣 = ∪ 𝑛) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
52 | 51 | expimpd 454 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (((𝑚 ⊆ 𝑅 ∧ 𝑛 ⊆ 𝑆) ∧ (𝑢 = ∪ 𝑚 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
53 | 15, 52 | syl5bi 241 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
54 | 53 | exlimdvv 1937 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (∃𝑚∃𝑛((𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ (𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
55 | 14, 54 | syl5bir 242 |
. . . . . . . . 9
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((∃𝑚(𝑚 ⊆ 𝑅 ∧ 𝑢 = ∪ 𝑚) ∧ ∃𝑛(𝑛 ⊆ 𝑆 ∧ 𝑣 = ∪ 𝑛)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
56 | 13, 55 | sylbid 239 |
. . . . . . . 8
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝑢 ∈ (topGen‘𝑅) ∧ 𝑣 ∈ (topGen‘𝑆)) → (𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆))) |
57 | 56 | ralrimivv 3122 |
. . . . . . 7
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ∀𝑢 ∈ (topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆)) |
58 | | eqid 2738 |
. . . . . . . 8
⊢ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) |
59 | 58 | fmpo 7908 |
. . . . . . 7
⊢
(∀𝑢 ∈
(topGen‘𝑅)∀𝑣 ∈ (topGen‘𝑆)(𝑢 × 𝑣) ∈ (𝑅 ×t 𝑆) ↔ (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆)) |
60 | 57, 59 | sylib 217 |
. . . . . 6
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)):((topGen‘𝑅) × (topGen‘𝑆))⟶(𝑅 ×t 𝑆)) |
61 | 60 | frnd 6608 |
. . . . 5
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (𝑅 ×t 𝑆)) |
62 | 61, 2 | sseqtrd 3961 |
. . . 4
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) |
63 | | 2basgen 22140 |
. . . 4
⊢ ((ran
(𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)) ⊆ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ∧ ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) ⊆ (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣)))) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
64 | 10, 62, 63 | syl2anc 584 |
. . 3
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
65 | | fvex 6787 |
. . . 4
⊢
(topGen‘𝑅)
∈ V |
66 | | fvex 6787 |
. . . 4
⊢
(topGen‘𝑆)
∈ V |
67 | | eqid 2738 |
. . . . 5
⊢ ran
(𝑢 ∈
(topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) = ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)) |
68 | 67 | txval 22715 |
. . . 4
⊢
(((topGen‘𝑅)
∈ V ∧ (topGen‘𝑆) ∈ V) → ((topGen‘𝑅) ×t
(topGen‘𝑆)) =
(topGen‘ran (𝑢 ∈
(topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣)))) |
69 | 65, 66, 68 | mp2an 689 |
. . 3
⊢
((topGen‘𝑅)
×t (topGen‘𝑆)) = (topGen‘ran (𝑢 ∈ (topGen‘𝑅), 𝑣 ∈ (topGen‘𝑆) ↦ (𝑢 × 𝑣))) |
70 | 64, 69 | eqtr4di 2796 |
. 2
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (topGen‘ran (𝑢 ∈ 𝑅, 𝑣 ∈ 𝑆 ↦ (𝑢 × 𝑣))) = ((topGen‘𝑅) ×t (topGen‘𝑆))) |
71 | 2, 70 | eqtr2d 2779 |
1
⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆)) |