NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imagekex GIF version

Theorem imagekex 4313
Description: The Kuratowski image functor preserves sethood. (Contributed by SF, 14-Jan-2015.)
Hypothesis
Ref Expression
imagekex.1 A V
Assertion
Ref Expression
imagekex ImagekA V

Proof of Theorem imagekex
StepHypRef Expression
1 imagekex.1 . 2 A V
2 imagekexg 4312 . 2 (A V → ImagekA V)
31, 2ax-mp 5 1 ImagekA V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2860  Imagekcimagek 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195
This theorem is referenced by:  nncex  4397  nnc0suc  4413  nncaddccl  4420  nnsucelrlem1  4425  preaddccan2lem1  4455  ltfinex  4465  evenodddisjlem1  4516  phiexg  4572  opexg  4588  proj1exg  4592  proj2exg  4593  phialllem1  4617  setconslem5  4736  1stex  4740  swapex  4743
  Copyright terms: Public domain W3C validator