New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elnc | GIF version |
Description: Membership in cardinality. (Contributed by SF, 24-Feb-2015.) |
Ref | Expression |
---|---|
elnc | ⊢ (A ∈ Nc B ↔ A ≈ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2867 | . . 3 ⊢ (A ∈ Nc B → A ∈ V) | |
2 | ecexr 5950 | . . . 4 ⊢ (A ∈ [B] ≈ → B ∈ V) | |
3 | df-nc 6101 | . . . 4 ⊢ Nc B = [B] ≈ | |
4 | 2, 3 | eleq2s 2445 | . . 3 ⊢ (A ∈ Nc B → B ∈ V) |
5 | 1, 4 | jca 518 | . 2 ⊢ (A ∈ Nc B → (A ∈ V ∧ B ∈ V)) |
6 | brex 4689 | . 2 ⊢ (A ≈ B → (A ∈ V ∧ B ∈ V)) | |
7 | 3 | eleq2i 2417 | . . . 4 ⊢ (A ∈ Nc B ↔ A ∈ [B] ≈ ) |
8 | elec 5964 | . . . 4 ⊢ (A ∈ [B] ≈ ↔ B ≈ A) | |
9 | 7, 8 | bitri 240 | . . 3 ⊢ (A ∈ Nc B ↔ B ≈ A) |
10 | ener 6039 | . . . . 5 ⊢ ≈ Er V | |
11 | 10 | a1i 10 | . . . 4 ⊢ ((A ∈ V ∧ B ∈ V) → ≈ Er V) |
12 | simpr 447 | . . . 4 ⊢ ((A ∈ V ∧ B ∈ V) → B ∈ V) | |
13 | simpl 443 | . . . 4 ⊢ ((A ∈ V ∧ B ∈ V) → A ∈ V) | |
14 | 11, 12, 13 | ersymb 5953 | . . 3 ⊢ ((A ∈ V ∧ B ∈ V) → (B ≈ A ↔ A ≈ B)) |
15 | 9, 14 | syl5bb 248 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ∈ Nc B ↔ A ≈ B)) |
16 | 5, 6, 15 | pm5.21nii 342 | 1 ⊢ (A ∈ Nc B ↔ A ≈ B) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∈ wcel 1710 Vcvv 2859 class class class wbr 4639 Er cer 5898 [cec 5945 ≈ cen 6028 Nc cnc 6091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-2nd 4797 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-en 6029 df-nc 6101 |
This theorem is referenced by: ncseqnc 6128 mucnc 6131 ncdisjun 6136 cenc 6181 sbth 6206 dflec3 6221 nclenc 6222 lenc 6223 taddc 6229 ce2le 6233 |
Copyright terms: Public domain | W3C validator |