NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  br1st GIF version

Theorem br1st 4859
Description: Binary relationship equivalence for the 1st function. (Contributed by set.mm contributors, 8-Jan-2015.)
Hypothesis
Ref Expression
br1st.1 B V
Assertion
Ref Expression
br1st (A1st Bx A = B, x)
Distinct variable groups:   x,A   x,B

Proof of Theorem br1st
Dummy variables y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brex 4690 . . 3 (A1st B → (A V B V))
21simpld 445 . 2 (A1st BA V)
3 br1st.1 . . . . 5 B V
4 vex 2863 . . . . 5 x V
53, 4opex 4589 . . . 4 B, x V
6 eleq1 2413 . . . 4 (A = B, x → (A V ↔ B, x V))
75, 6mpbiri 224 . . 3 (A = B, xA V)
87exlimiv 1634 . 2 (x A = B, xA V)
9 eqeq1 2359 . . . . 5 (y = A → (y = z, xA = z, x))
109exbidv 1626 . . . 4 (y = A → (x y = z, xx A = z, x))
11 opeq1 4579 . . . . . 6 (z = Bz, x = B, x)
1211eqeq2d 2364 . . . . 5 (z = B → (A = z, xA = B, x))
1312exbidv 1626 . . . 4 (z = B → (x A = z, xx A = B, x))
14 df-1st 4724 . . . 4 1st = {y, z x y = z, x}
1510, 13, 14brabg 4707 . . 3 ((A V B V) → (A1st Bx A = B, x))
163, 15mpan2 652 . 2 (A V → (A1st Bx A = B, x))
172, 8, 16pm5.21nii 342 1 (A1st Bx A = B, x)
Colors of variables: wff setvar class
Syntax hints:  wb 176  wex 1541   = wceq 1642   wcel 1710  Vcvv 2860  cop 4562   class class class wbr 4640  1st c1st 4718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724
This theorem is referenced by:  df2nd2  5112  dfxp2  5114  opbr1st  5502  1stfo  5506  dfdm4  5508  brtxp  5784  op1st2nd  5791  addcfnex  5825  brpprod  5840  fundmen  6044  csucex  6260  addccan2nclem1  6264
  Copyright terms: Public domain W3C validator