NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pwex GIF version

Theorem pwex 4330
Description: The power class of a set is a set. (Contributed by SF, 21-Jan-2015.)
Hypothesis
Ref Expression
pwex.1 A V
Assertion
Ref Expression
pwex A V

Proof of Theorem pwex
StepHypRef Expression
1 pwex.1 . 2 A V
2 pwexg 4329 . 2 (A V → A V)
31, 2ax-mp 5 1 A V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2860  cpw 3723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-xpk 4186  df-cnvk 4187  df-imak 4190  df-p6 4192  df-sik 4193  df-ssetk 4194
This theorem is referenced by:  ncfinraiselem2  4481  ncfinlowerlem1  4483  tfinrelkex  4488  srelkex  4526  tfinnnlem1  4534  sfinltfin  4536  vfinspsslem1  4551  mapexi  6004  fnpm  6009  enpw1pw  6076  ncpwpw1  6154  tce2  6237
  Copyright terms: Public domain W3C validator