New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sikex | GIF version |
Description: The Kuratowski singleton image of a set is a set. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
sikex.1 | ⊢ A ∈ V |
Ref | Expression |
---|---|
sikex | ⊢ SIk A ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sikex.1 | . 2 ⊢ A ∈ V | |
2 | sikexg 4297 | . 2 ⊢ (A ∈ V → SIk A ∈ V) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ SIk A ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 SIk csik 4182 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-si 4084 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-1c 4137 df-xpk 4186 df-cnvk 4187 df-sik 4193 |
This theorem is referenced by: addcexlem 4383 nncex 4397 nnsucelrlem1 4425 ltfinex 4465 ncfinraiselem2 4481 ncfinlowerlem1 4483 tfinrelkex 4488 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelkex 4526 sfintfinlem1 4532 tfinnnlem1 4534 spfinex 4538 setconslem5 4736 1stex 4740 swapex 4743 |
Copyright terms: Public domain | W3C validator |