HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chirredi Structured version   Visualization version   GIF version

Theorem chirredi 28471
Description: The Hilbert lattice is irreducible: any element that commutes with all elements must be zero or one. Theorem 14.8.4 of [BeltramettiCassinelli] p. 166. (Contributed by NM, 15-Jun-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
chirred.1 𝐴C
chirred.2 (𝑥C𝐴 𝐶 𝑥)
Assertion
Ref Expression
chirredi (𝐴 = 0𝐴 = ℋ)
Distinct variable group:   𝑥,𝐴

Proof of Theorem chirredi
Dummy variables 𝑞 𝑝 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2609 . . 3 0 = 0
2 ioran 509 . . . . 5 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) ↔ (¬ 𝐴 = 0 ∧ ¬ (⊥‘𝐴) = 0))
3 df-ne 2781 . . . . . 6 (𝐴 ≠ 0 ↔ ¬ 𝐴 = 0)
4 df-ne 2781 . . . . . 6 ((⊥‘𝐴) ≠ 0 ↔ ¬ (⊥‘𝐴) = 0)
53, 4anbi12i 728 . . . . 5 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) ↔ (¬ 𝐴 = 0 ∧ ¬ (⊥‘𝐴) = 0))
62, 5bitr4i 265 . . . 4 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) ↔ (𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0))
7 chirred.1 . . . . . . . 8 𝐴C
87hatomici 28436 . . . . . . 7 (𝐴 ≠ 0 → ∃𝑝 ∈ HAtoms 𝑝𝐴)
97choccli 27384 . . . . . . . 8 (⊥‘𝐴) ∈ C
109hatomici 28436 . . . . . . 7 ((⊥‘𝐴) ≠ 0 → ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴))
118, 10anim12i 587 . . . . . 6 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → (∃𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴)))
12 reeanv 3085 . . . . . 6 (∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) ↔ (∃𝑝 ∈ HAtoms 𝑝𝐴 ∧ ∃𝑞 ∈ HAtoms 𝑞 ⊆ (⊥‘𝐴)))
1311, 12sylibr 222 . . . . 5 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → ∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)))
14 simpll 785 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑝 ∈ HAtoms)
15 simprl 789 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑞 ∈ HAtoms)
16 atelch 28421 . . . . . . . . . . . . . . . 16 (𝑝 ∈ HAtoms → 𝑝C )
17 chsscon3 27577 . . . . . . . . . . . . . . . 16 ((𝑝C𝐴C ) → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
1816, 7, 17sylancl 692 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → (𝑝𝐴 ↔ (⊥‘𝐴) ⊆ (⊥‘𝑝)))
1918biimpa 499 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑝𝐴) → (⊥‘𝐴) ⊆ (⊥‘𝑝))
20 sstr 3575 . . . . . . . . . . . . . 14 ((𝑞 ⊆ (⊥‘𝐴) ∧ (⊥‘𝐴) ⊆ (⊥‘𝑝)) → 𝑞 ⊆ (⊥‘𝑝))
2119, 20sylan2 489 . . . . . . . . . . . . 13 ((𝑞 ⊆ (⊥‘𝐴) ∧ (𝑝 ∈ HAtoms ∧ 𝑝𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
2221ancoms 467 . . . . . . . . . . . 12 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝐴)) → 𝑞 ⊆ (⊥‘𝑝))
23 atne0 28422 . . . . . . . . . . . . . . 15 (𝑝 ∈ HAtoms → 𝑝 ≠ 0)
2423adantr 479 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝 ≠ 0)
25 sseq1 3588 . . . . . . . . . . . . . . . . . . . 20 (𝑝 = 𝑞 → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑞 ⊆ (⊥‘𝑝)))
2625bicomd 211 . . . . . . . . . . . . . . . . . . 19 (𝑝 = 𝑞 → (𝑞 ⊆ (⊥‘𝑝) ↔ 𝑝 ⊆ (⊥‘𝑝)))
27 chssoc 27573 . . . . . . . . . . . . . . . . . . . 20 (𝑝C → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
2816, 27syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑝 ∈ HAtoms → (𝑝 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
2926, 28sylan9bbr 732 . . . . . . . . . . . . . . . . . 18 ((𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞) → (𝑞 ⊆ (⊥‘𝑝) ↔ 𝑝 = 0))
3029biimpa 499 . . . . . . . . . . . . . . . . 17 (((𝑝 ∈ HAtoms ∧ 𝑝 = 𝑞) ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝 = 0)
3130an32s 841 . . . . . . . . . . . . . . . 16 (((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) ∧ 𝑝 = 𝑞) → 𝑝 = 0)
3231ex 448 . . . . . . . . . . . . . . 15 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → (𝑝 = 𝑞𝑝 = 0))
3332necon3d 2802 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → (𝑝 ≠ 0𝑝𝑞))
3424, 33mpd 15 . . . . . . . . . . . . 13 ((𝑝 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝𝑞)
3534adantlr 746 . . . . . . . . . . . 12 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝑝)) → 𝑝𝑞)
3622, 35syldan 485 . . . . . . . . . . 11 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ 𝑞 ⊆ (⊥‘𝐴)) → 𝑝𝑞)
3736adantrl 747 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → 𝑝𝑞)
38 superpos 28431 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms ∧ 𝑝𝑞) → ∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)))
3914, 15, 37, 38syl3anc 1317 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → ∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)))
40 df-3an 1032 . . . . . . . . . . . 12 ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) ↔ ((𝑟𝑝𝑟𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
41 neanior 2873 . . . . . . . . . . . . 13 ((𝑟𝑝𝑟𝑞) ↔ ¬ (𝑟 = 𝑝𝑟 = 𝑞))
4241anbi1i 726 . . . . . . . . . . . 12 (((𝑟𝑝𝑟𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)) ↔ (¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
4340, 42bitri 262 . . . . . . . . . . 11 ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) ↔ (¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)))
44 chirred.2 . . . . . . . . . . . . . . . . 17 (𝑥C𝐴 𝐶 𝑥)
457, 44chirredlem4 28470 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ (𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝑝 𝑞))) → (𝑟 = 𝑝𝑟 = 𝑞))
4645anassrs 677 . . . . . . . . . . . . . . 15 (((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑟 = 𝑝𝑟 = 𝑞))
4746pm2.24d 145 . . . . . . . . . . . . . 14 (((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → ¬ 0 = 0))
4847ex 448 . . . . . . . . . . . . 13 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → ¬ 0 = 0)))
4948com23 83 . . . . . . . . . . . 12 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → (¬ (𝑟 = 𝑝𝑟 = 𝑞) → (𝑟 ⊆ (𝑝 𝑞) → ¬ 0 = 0)))
5049impd 445 . . . . . . . . . . 11 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((¬ (𝑟 = 𝑝𝑟 = 𝑞) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5143, 50syl5bi 230 . . . . . . . . . 10 ((((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) ∧ 𝑟 ∈ HAtoms) → ((𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5251rexlimdva 3012 . . . . . . . . 9 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → (∃𝑟 ∈ HAtoms (𝑟𝑝𝑟𝑞𝑟 ⊆ (𝑝 𝑞)) → ¬ 0 = 0))
5339, 52mpd 15 . . . . . . . 8 (((𝑝 ∈ HAtoms ∧ 𝑝𝐴) ∧ (𝑞 ∈ HAtoms ∧ 𝑞 ⊆ (⊥‘𝐴))) → ¬ 0 = 0)
5453an4s 864 . . . . . . 7 (((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) ∧ (𝑝𝐴𝑞 ⊆ (⊥‘𝐴))) → ¬ 0 = 0)
5554ex 448 . . . . . 6 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) → ¬ 0 = 0))
5655rexlimivv 3017 . . . . 5 (∃𝑝 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝𝐴𝑞 ⊆ (⊥‘𝐴)) → ¬ 0 = 0)
5713, 56syl 17 . . . 4 ((𝐴 ≠ 0 ∧ (⊥‘𝐴) ≠ 0) → ¬ 0 = 0)
586, 57sylbi 205 . . 3 (¬ (𝐴 = 0 ∨ (⊥‘𝐴) = 0) → ¬ 0 = 0)
591, 58mt4 113 . 2 (𝐴 = 0 ∨ (⊥‘𝐴) = 0)
60 fveq2 6088 . . . 4 ((⊥‘𝐴) = 0 → (⊥‘(⊥‘𝐴)) = (⊥‘0))
617ococi 27482 . . . 4 (⊥‘(⊥‘𝐴)) = 𝐴
62 choc0 27403 . . . 4 (⊥‘0) = ℋ
6360, 61, 623eqtr3g 2666 . . 3 ((⊥‘𝐴) = 0𝐴 = ℋ)
6463orim2i 538 . 2 ((𝐴 = 0 ∨ (⊥‘𝐴) = 0) → (𝐴 = 0𝐴 = ℋ))
6559, 64ax-mp 5 1 (𝐴 = 0𝐴 = ℋ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wrex 2896  wss 3539   class class class wbr 4577  cfv 5790  (class class class)co 6527  chil 26994   C cch 27004  cort 27005   chj 27008  0c0h 27010   𝐶 ccm 27011  HAtomscat 27040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cc 9118  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873  ax-hilex 27074  ax-hfvadd 27075  ax-hvcom 27076  ax-hvass 27077  ax-hv0cl 27078  ax-hvaddid 27079  ax-hfvmul 27080  ax-hvmulid 27081  ax-hvmulass 27082  ax-hvdistr1 27083  ax-hvdistr2 27084  ax-hvmul0 27085  ax-hfi 27154  ax-his1 27157  ax-his2 27158  ax-his3 27159  ax-his4 27160  ax-hcompl 27277
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-omul 7430  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-acn 8629  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-rlim 14017  df-sum 14214  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-cn 20789  df-cnp 20790  df-lm 20791  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cfil 22806  df-cau 22807  df-cmet 22808  df-grpo 26525  df-gid 26526  df-ginv 26527  df-gdiv 26528  df-ablo 26580  df-vc 26595  df-nv 26643  df-va 26646  df-ba 26647  df-sm 26648  df-0v 26649  df-vs 26650  df-nmcv 26651  df-ims 26652  df-dip 26769  df-ssp 26793  df-ph 26886  df-cbn 26937  df-hnorm 27043  df-hba 27044  df-hvsub 27046  df-hlim 27047  df-hcau 27048  df-sh 27282  df-ch 27296  df-oc 27327  df-ch0 27328  df-shs 27385  df-span 27386  df-chj 27387  df-chsup 27388  df-pjh 27472  df-cm 27660  df-cv 28356  df-at 28415
This theorem is referenced by:  chirred  28472
  Copyright terms: Public domain W3C validator