Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dignn0flhalf Structured version   Visualization version   GIF version

Theorem dignn0flhalf 42737
Description: The digits of the rounded half of a nonnegative integer are the digits of the integer shifted by 1. (Contributed by AV, 7-Jun-2010.)
Assertion
Ref Expression
dignn0flhalf ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))

Proof of Theorem dignn0flhalf
StepHypRef Expression
1 eluzge2nn0 11765 . . . 4 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ0)
2 nn0eo 42647 . . . 4 (𝐴 ∈ ℕ0 → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
31, 2syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0))
4 dignn0ehalf 42736 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ ℕ0𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
51, 4syl3an2 1400 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(𝐴 / 2)))
6 eluzelz 11735 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℤ)
7 nn0z 11438 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℕ0 → (𝐴 / 2) ∈ ℤ)
8 zefldiv2 42649 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ (𝐴 / 2) ∈ ℤ) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
96, 7, 8syl2anr 494 . . . . . . . . 9 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (⌊‘(𝐴 / 2)) = (𝐴 / 2))
109eqcomd 2657 . . . . . . . 8 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2)) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
11103adant3 1101 . . . . . . 7 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐴 / 2) = (⌊‘(𝐴 / 2)))
1211oveq2d 6706 . . . . . 6 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(𝐴 / 2)) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
135, 12eqtrd 2685 . . . . 5 (((𝐴 / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
14133exp 1283 . . . 4 ((𝐴 / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
1563ad2ant2 1103 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ ℤ)
16 simp2 1082 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (ℤ‘2))
17 simp1 1081 . . . . . . . . 9 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 + 1) / 2) ∈ ℕ0)
18 nno 15145 . . . . . . . . 9 ((𝐴 ∈ (ℤ‘2) ∧ ((𝐴 + 1) / 2) ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
1916, 17, 18syl2anc 694 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐴 − 1) / 2) ∈ ℕ)
20 simp3 1083 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐼 ∈ ℕ0)
21 dignn0flhalflem2 42735 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ ((𝐴 − 1) / 2) ∈ ℕ ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2215, 19, 20, 21syl3anc 1366 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / (2↑(𝐼 + 1)))) = (⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))))
2322oveq1d 6705 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
24 2nn 11223 . . . . . . . 8 2 ∈ ℕ
2524a1i 11 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 2 ∈ ℕ)
26 peano2nn0 11371 . . . . . . . 8 (𝐼 ∈ ℕ0 → (𝐼 + 1) ∈ ℕ0)
27263ad2ant3 1104 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼 + 1) ∈ ℕ0)
28 nn0rp0 12317 . . . . . . . . 9 (𝐴 ∈ ℕ0𝐴 ∈ (0[,)+∞))
291, 28syl 17 . . . . . . . 8 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ (0[,)+∞))
30293ad2ant2 1103 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → 𝐴 ∈ (0[,)+∞))
31 nn0digval 42719 . . . . . . 7 ((2 ∈ ℕ ∧ (𝐼 + 1) ∈ ℕ0𝐴 ∈ (0[,)+∞)) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
3225, 27, 30, 31syl3anc 1366 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = ((⌊‘(𝐴 / (2↑(𝐼 + 1)))) mod 2))
33 eluzelre 11736 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
3433rehalfcld 11317 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → (𝐴 / 2) ∈ ℝ)
351nn0ge0d 11392 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → 0 ≤ 𝐴)
36 2re 11128 . . . . . . . . . . . . 13 2 ∈ ℝ
37 2pos 11150 . . . . . . . . . . . . 13 0 < 2
3836, 37pm3.2i 470 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
3938a1i 11 . . . . . . . . . . 11 (𝐴 ∈ (ℤ‘2) → (2 ∈ ℝ ∧ 0 < 2))
40 divge0 10930 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (2 ∈ ℝ ∧ 0 < 2)) → 0 ≤ (𝐴 / 2))
4133, 35, 39, 40syl21anc 1365 . . . . . . . . . 10 (𝐴 ∈ (ℤ‘2) → 0 ≤ (𝐴 / 2))
42 flge0nn0 12661 . . . . . . . . . 10 (((𝐴 / 2) ∈ ℝ ∧ 0 ≤ (𝐴 / 2)) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
4334, 41, 42syl2anc 694 . . . . . . . . 9 (𝐴 ∈ (ℤ‘2) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
44433ad2ant2 1103 . . . . . . . 8 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ ℕ0)
45 nn0rp0 12317 . . . . . . . 8 ((⌊‘(𝐴 / 2)) ∈ ℕ0 → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
4644, 45syl 17 . . . . . . 7 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (⌊‘(𝐴 / 2)) ∈ (0[,)+∞))
47 nn0digval 42719 . . . . . . 7 ((2 ∈ ℕ ∧ 𝐼 ∈ ℕ0 ∧ (⌊‘(𝐴 / 2)) ∈ (0[,)+∞)) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4825, 20, 46, 47syl3anc 1366 . . . . . 6 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → (𝐼(digit‘2)(⌊‘(𝐴 / 2))) = ((⌊‘((⌊‘(𝐴 / 2)) / (2↑𝐼))) mod 2))
4923, 32, 483eqtr4d 2695 . . . . 5 ((((𝐴 + 1) / 2) ∈ ℕ0𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
50493exp 1283 . . . 4 (((𝐴 + 1) / 2) ∈ ℕ0 → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
5114, 50jaoi 393 . . 3 (((𝐴 / 2) ∈ ℕ0 ∨ ((𝐴 + 1) / 2) ∈ ℕ0) → (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))))
523, 51mpcom 38 . 2 (𝐴 ∈ (ℤ‘2) → (𝐼 ∈ ℕ0 → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2)))))
5352imp 444 1 ((𝐴 ∈ (ℤ‘2) ∧ 𝐼 ∈ ℕ0) → ((𝐼 + 1)(digit‘2)𝐴) = (𝐼(digit‘2)(⌊‘(𝐴 / 2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030   class class class wbr 4685  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  1c1 9975   + caddc 9977  +∞cpnf 10109   < clt 10112  cle 10113  cmin 10304   / cdiv 10722  cn 11058  2c2 11108  0cn0 11330  cz 11415  cuz 11725  [,)cico 12215  cfl 12631   mod cmo 12708  cexp 12900  digitcdig 42714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-dig 42715
This theorem is referenced by:  nn0sumshdiglemB  42739
  Copyright terms: Public domain W3C validator