MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodge1 Structured version   Visualization version   GIF version

Theorem fprodge1 15349
Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge1.ph 𝑘𝜑
fprodge1.a (𝜑𝐴 ∈ Fin)
fprodge1.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodge1.ge ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
Assertion
Ref Expression
fprodge1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodge1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 10700 . 2 1 ∈ ℝ*
2 pnfxr 10695 . 2 +∞ ∈ ℝ*
3 fprodge1.ph . . 3 𝑘𝜑
4 1re 10641 . . . . . 6 1 ∈ ℝ
5 icossre 12818 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ)
64, 2, 5mp2an 690 . . . . 5 (1[,)+∞) ⊆ ℝ
7 ax-resscn 10594 . . . . 5 ℝ ⊆ ℂ
86, 7sstri 3976 . . . 4 (1[,)+∞) ⊆ ℂ
98a1i 11 . . 3 (𝜑 → (1[,)+∞) ⊆ ℂ)
101a1i 11 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*)
112a1i 11 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*)
126sseli 3963 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
1312adantr 483 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
146sseli 3963 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
1514adantl 484 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
1613, 15remulcld 10671 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ)
1716rexrd 10691 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*)
18 1t1e1 11800 . . . . . 6 (1 · 1) = 1
194a1i 11 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ)
20 0le1 11163 . . . . . . . 8 0 ≤ 1
2120a1i 11 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1)
22 icogelb 12789 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
231, 2, 22mp3an12 1447 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
2423adantr 483 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
25 icogelb 12789 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
261, 2, 25mp3an12 1447 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2726adantl 484 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2819, 13, 19, 15, 21, 21, 24, 27lemul12ad 11582 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦))
2918, 28eqbrtrrid 5102 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦))
3016ltpnfd 12517 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞)
3110, 11, 17, 29, 30elicod 12788 . . . 4 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞))
3231adantl 484 . . 3 ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞))
33 fprodge1.a . . 3 (𝜑𝐴 ∈ Fin)
341a1i 11 . . . 4 ((𝜑𝑘𝐴) → 1 ∈ ℝ*)
352a1i 11 . . . 4 ((𝜑𝑘𝐴) → +∞ ∈ ℝ*)
36 fprodge1.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3736rexrd 10691 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
38 fprodge1.ge . . . 4 ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
3936ltpnfd 12517 . . . 4 ((𝜑𝑘𝐴) → 𝐵 < +∞)
4034, 35, 37, 38, 39elicod 12788 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (1[,)+∞))
41 1le1 11268 . . . . 5 1 ≤ 1
42 ltpnf 12516 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
434, 42ax-mp 5 . . . . 5 1 < +∞
44 elico2 12801 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)))
454, 2, 44mp2an 690 . . . . 5 (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))
464, 41, 43, 45mpbir3an 1337 . . . 4 1 ∈ (1[,)+∞)
4746a1i 11 . . 3 (𝜑 → 1 ∈ (1[,)+∞))
483, 9, 32, 33, 40, 47fprodcllemf 15312 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (1[,)+∞))
49 icogelb 12789 . 2 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘𝐴 𝐵)
501, 2, 48, 49mp3an12i 1461 1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wnf 1784  wcel 2114  wss 3936   class class class wbr 5066  (class class class)co 7156  Fincfn 8509  cc 10535  cr 10536  0cc0 10537  1c1 10538   · cmul 10542  +∞cpnf 10672  *cxr 10674   < clt 10675  cle 10676  [,)cico 12741  cprod 15259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-prod 15260
This theorem is referenced by:  fprodle  15350
  Copyright terms: Public domain W3C validator