MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fta1blem Structured version   Visualization version   GIF version

Theorem fta1blem 24762
Description: Lemma for fta1b 24763. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
fta1b.p 𝑃 = (Poly1𝑅)
fta1b.b 𝐵 = (Base‘𝑃)
fta1b.d 𝐷 = ( deg1𝑅)
fta1b.o 𝑂 = (eval1𝑅)
fta1b.w 𝑊 = (0g𝑅)
fta1b.z 0 = (0g𝑃)
fta1blem.k 𝐾 = (Base‘𝑅)
fta1blem.t × = (.r𝑅)
fta1blem.x 𝑋 = (var1𝑅)
fta1blem.s · = ( ·𝑠𝑃)
fta1blem.1 (𝜑𝑅 ∈ CRing)
fta1blem.2 (𝜑𝑀𝐾)
fta1blem.3 (𝜑𝑁𝐾)
fta1blem.4 (𝜑 → (𝑀 × 𝑁) = 𝑊)
fta1blem.5 (𝜑𝑀𝑊)
fta1blem.6 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
Assertion
Ref Expression
fta1blem (𝜑𝑁 = 𝑊)

Proof of Theorem fta1blem
StepHypRef Expression
1 fta1blem.3 . . . 4 (𝜑𝑁𝐾)
2 fta1b.o . . . . . . 7 𝑂 = (eval1𝑅)
3 fta1b.p . . . . . . 7 𝑃 = (Poly1𝑅)
4 fta1blem.k . . . . . . 7 𝐾 = (Base‘𝑅)
5 fta1b.b . . . . . . 7 𝐵 = (Base‘𝑃)
6 fta1blem.1 . . . . . . 7 (𝜑𝑅 ∈ CRing)
7 fta1blem.x . . . . . . . 8 𝑋 = (var1𝑅)
82, 7, 4, 3, 5, 6, 1evl1vard 20500 . . . . . . 7 (𝜑 → (𝑋𝐵 ∧ ((𝑂𝑋)‘𝑁) = 𝑁))
9 fta1blem.2 . . . . . . 7 (𝜑𝑀𝐾)
10 fta1blem.s . . . . . . 7 · = ( ·𝑠𝑃)
11 fta1blem.t . . . . . . 7 × = (.r𝑅)
122, 3, 4, 5, 6, 1, 8, 9, 10, 11evl1vsd 20507 . . . . . 6 (𝜑 → ((𝑀 · 𝑋) ∈ 𝐵 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁)))
1312simprd 498 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = (𝑀 × 𝑁))
14 fta1blem.4 . . . . 5 (𝜑 → (𝑀 × 𝑁) = 𝑊)
1513, 14eqtrd 2856 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)
16 eqid 2821 . . . . . . 7 (𝑅s 𝐾) = (𝑅s 𝐾)
17 eqid 2821 . . . . . . 7 (Base‘(𝑅s 𝐾)) = (Base‘(𝑅s 𝐾))
184fvexi 6684 . . . . . . . 8 𝐾 ∈ V
1918a1i 11 . . . . . . 7 (𝜑𝐾 ∈ V)
202, 3, 16, 4evl1rhm 20495 . . . . . . . . . 10 (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
216, 20syl 17 . . . . . . . . 9 (𝜑𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)))
225, 17rhmf 19478 . . . . . . . . 9 (𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2321, 22syl 17 . . . . . . . 8 (𝜑𝑂:𝐵⟶(Base‘(𝑅s 𝐾)))
2412simpld 497 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ∈ 𝐵)
2523, 24ffvelrnd 6852 . . . . . . 7 (𝜑 → (𝑂‘(𝑀 · 𝑋)) ∈ (Base‘(𝑅s 𝐾)))
2616, 4, 17, 6, 19, 25pwselbas 16762 . . . . . 6 (𝜑 → (𝑂‘(𝑀 · 𝑋)):𝐾𝐾)
2726ffnd 6515 . . . . 5 (𝜑 → (𝑂‘(𝑀 · 𝑋)) Fn 𝐾)
28 fniniseg 6830 . . . . 5 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
2927, 28syl 17 . . . 4 (𝜑 → (𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑁𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑁) = 𝑊)))
301, 15, 29mpbir2and 711 . . 3 (𝜑𝑁 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
31 fvex 6683 . . . . . . . 8 (𝑂‘(𝑀 · 𝑋)) ∈ V
3231cnvex 7630 . . . . . . 7 (𝑂‘(𝑀 · 𝑋)) ∈ V
3332imaex 7621 . . . . . 6 ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V
3433a1i 11 . . . . 5 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V)
35 1nn0 11914 . . . . . 6 1 ∈ ℕ0
3635a1i 11 . . . . 5 (𝜑 → 1 ∈ ℕ0)
37 crngring 19308 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
386, 37syl 17 . . . . . . . . . . . 12 (𝜑𝑅 ∈ Ring)
397, 3, 5vr1cl 20385 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑋𝐵)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑𝑋𝐵)
41 eqid 2821 . . . . . . . . . . . . 13 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4241, 5mgpbas 19245 . . . . . . . . . . . 12 𝐵 = (Base‘(mulGrp‘𝑃))
43 eqid 2821 . . . . . . . . . . . 12 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
4442, 43mulg1 18235 . . . . . . . . . . 11 (𝑋𝐵 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4540, 44syl 17 . . . . . . . . . 10 (𝜑 → (1(.g‘(mulGrp‘𝑃))𝑋) = 𝑋)
4645oveq2d 7172 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = (𝑀 · 𝑋))
47 fta1blem.5 . . . . . . . . . . 11 (𝜑𝑀𝑊)
48 fta1b.w . . . . . . . . . . . . 13 𝑊 = (0g𝑅)
4948, 4, 3, 7, 10, 41, 43coe1tmfv1 20442 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐾 ∧ 1 ∈ ℕ0) → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
5038, 9, 36, 49syl3anc 1367 . . . . . . . . . . 11 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = 𝑀)
51 fta1b.z . . . . . . . . . . . . . . 15 0 = (0g𝑃)
523, 51, 48coe1z 20431 . . . . . . . . . . . . . 14 (𝑅 ∈ Ring → (coe10 ) = (ℕ0 × {𝑊}))
5338, 52syl 17 . . . . . . . . . . . . 13 (𝜑 → (coe10 ) = (ℕ0 × {𝑊}))
5453fveq1d 6672 . . . . . . . . . . . 12 (𝜑 → ((coe10 )‘1) = ((ℕ0 × {𝑊})‘1))
5548fvexi 6684 . . . . . . . . . . . . . 14 𝑊 ∈ V
5655fvconst2 6966 . . . . . . . . . . . . 13 (1 ∈ ℕ0 → ((ℕ0 × {𝑊})‘1) = 𝑊)
5735, 56ax-mp 5 . . . . . . . . . . . 12 ((ℕ0 × {𝑊})‘1) = 𝑊
5854, 57syl6eq 2872 . . . . . . . . . . 11 (𝜑 → ((coe10 )‘1) = 𝑊)
5947, 50, 583netr4d 3093 . . . . . . . . . 10 (𝜑 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1))
60 fveq2 6670 . . . . . . . . . . . 12 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → (coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (coe10 ))
6160fveq1d 6672 . . . . . . . . . . 11 ((𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) = 0 → ((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) = ((coe10 )‘1))
6261necon3i 3048 . . . . . . . . . 10 (((coe1‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)))‘1) ≠ ((coe10 )‘1) → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6359, 62syl 17 . . . . . . . . 9 (𝜑 → (𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋)) ≠ 0 )
6446, 63eqnetrrd 3084 . . . . . . . 8 (𝜑 → (𝑀 · 𝑋) ≠ 0 )
65 eldifsn 4719 . . . . . . . 8 ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) ↔ ((𝑀 · 𝑋) ∈ 𝐵 ∧ (𝑀 · 𝑋) ≠ 0 ))
6624, 64, 65sylanbrc 585 . . . . . . 7 (𝜑 → (𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }))
67 fta1blem.6 . . . . . . 7 (𝜑 → ((𝑀 · 𝑋) ∈ (𝐵 ∖ { 0 }) → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋))))
6866, 67mpd 15 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ (𝐷‘(𝑀 · 𝑋)))
6946fveq2d 6674 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = (𝐷‘(𝑀 · 𝑋)))
70 fta1b.d . . . . . . . . 9 𝐷 = ( deg1𝑅)
7170, 4, 3, 7, 10, 41, 43, 48deg1tm 24712 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝑀𝐾𝑀𝑊) ∧ 1 ∈ ℕ0) → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7238, 9, 47, 36, 71syl121anc 1371 . . . . . . 7 (𝜑 → (𝐷‘(𝑀 · (1(.g‘(mulGrp‘𝑃))𝑋))) = 1)
7369, 72eqtr3d 2858 . . . . . 6 (𝜑 → (𝐷‘(𝑀 · 𝑋)) = 1)
7468, 73breqtrd 5092 . . . . 5 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1)
75 hashbnd 13697 . . . . 5 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V ∧ 1 ∈ ℕ0 ∧ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1) → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
7634, 36, 74, 75syl3anc 1367 . . . 4 (𝜑 → ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin)
774, 48ring0cl 19319 . . . . . . 7 (𝑅 ∈ Ring → 𝑊𝐾)
7838, 77syl 17 . . . . . 6 (𝜑𝑊𝐾)
79 eqid 2821 . . . . . . . . . . . . 13 (algSc‘𝑃) = (algSc‘𝑃)
803, 79, 4, 5ply1sclf 20453 . . . . . . . . . . . 12 (𝑅 ∈ Ring → (algSc‘𝑃):𝐾𝐵)
8138, 80syl 17 . . . . . . . . . . 11 (𝜑 → (algSc‘𝑃):𝐾𝐵)
8281, 9ffvelrnd 6852 . . . . . . . . . 10 (𝜑 → ((algSc‘𝑃)‘𝑀) ∈ 𝐵)
83 eqid 2821 . . . . . . . . . . 11 (.r𝑃) = (.r𝑃)
84 eqid 2821 . . . . . . . . . . 11 (.r‘(𝑅s 𝐾)) = (.r‘(𝑅s 𝐾))
855, 83, 84rhmmul 19479 . . . . . . . . . 10 ((𝑂 ∈ (𝑃 RingHom (𝑅s 𝐾)) ∧ ((algSc‘𝑃)‘𝑀) ∈ 𝐵𝑋𝐵) → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
8621, 82, 40, 85syl3anc 1367 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)))
873ply1assa 20367 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑃 ∈ AssAlg)
886, 87syl 17 . . . . . . . . . . 11 (𝜑𝑃 ∈ AssAlg)
893ply1sca 20421 . . . . . . . . . . . . . . 15 (𝑅 ∈ CRing → 𝑅 = (Scalar‘𝑃))
906, 89syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 = (Scalar‘𝑃))
9190fveq2d 6674 . . . . . . . . . . . . 13 (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
924, 91syl5eq 2868 . . . . . . . . . . . 12 (𝜑𝐾 = (Base‘(Scalar‘𝑃)))
939, 92eleqtrd 2915 . . . . . . . . . . 11 (𝜑𝑀 ∈ (Base‘(Scalar‘𝑃)))
94 eqid 2821 . . . . . . . . . . . 12 (Scalar‘𝑃) = (Scalar‘𝑃)
95 eqid 2821 . . . . . . . . . . . 12 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
9679, 94, 95, 5, 83, 10asclmul1 20114 . . . . . . . . . . 11 ((𝑃 ∈ AssAlg ∧ 𝑀 ∈ (Base‘(Scalar‘𝑃)) ∧ 𝑋𝐵) → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9788, 93, 40, 96syl3anc 1367 . . . . . . . . . 10 (𝜑 → (((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋) = (𝑀 · 𝑋))
9897fveq2d 6674 . . . . . . . . 9 (𝜑 → (𝑂‘(((algSc‘𝑃)‘𝑀)(.r𝑃)𝑋)) = (𝑂‘(𝑀 · 𝑋)))
9923, 82ffvelrnd 6852 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) ∈ (Base‘(𝑅s 𝐾)))
10023, 40ffvelrnd 6852 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) ∈ (Base‘(𝑅s 𝐾)))
10116, 17, 6, 19, 99, 100, 11, 84pwsmulrval 16764 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)))
1022, 3, 4, 79evl1sca 20497 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑀𝐾) → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1036, 9, 102syl2anc 586 . . . . . . . . . . 11 (𝜑 → (𝑂‘((algSc‘𝑃)‘𝑀)) = (𝐾 × {𝑀}))
1042, 7, 4evl1var 20499 . . . . . . . . . . . 12 (𝑅 ∈ CRing → (𝑂𝑋) = ( I ↾ 𝐾))
1056, 104syl 17 . . . . . . . . . . 11 (𝜑 → (𝑂𝑋) = ( I ↾ 𝐾))
106103, 105oveq12d 7174 . . . . . . . . . 10 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀)) ∘f × (𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
107101, 106eqtrd 2856 . . . . . . . . 9 (𝜑 → ((𝑂‘((algSc‘𝑃)‘𝑀))(.r‘(𝑅s 𝐾))(𝑂𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
10886, 98, 1073eqtr3d 2864 . . . . . . . 8 (𝜑 → (𝑂‘(𝑀 · 𝑋)) = ((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾)))
109108fveq1d 6672 . . . . . . 7 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊))
110 fnconstg 6567 . . . . . . . . . 10 (𝑀𝐾 → (𝐾 × {𝑀}) Fn 𝐾)
1119, 110syl 17 . . . . . . . . 9 (𝜑 → (𝐾 × {𝑀}) Fn 𝐾)
112 fnresi 6476 . . . . . . . . . 10 ( I ↾ 𝐾) Fn 𝐾
113112a1i 11 . . . . . . . . 9 (𝜑 → ( I ↾ 𝐾) Fn 𝐾)
114 fnfvof 7423 . . . . . . . . 9 ((((𝐾 × {𝑀}) Fn 𝐾 ∧ ( I ↾ 𝐾) Fn 𝐾) ∧ (𝐾 ∈ V ∧ 𝑊𝐾)) → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
115111, 113, 19, 78, 114syl22anc 836 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)))
116 fvconst2g 6964 . . . . . . . . . . 11 ((𝑀𝐾𝑊𝐾) → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
1179, 78, 116syl2anc 586 . . . . . . . . . 10 (𝜑 → ((𝐾 × {𝑀})‘𝑊) = 𝑀)
118 fvresi 6935 . . . . . . . . . . 11 (𝑊𝐾 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
11978, 118syl 17 . . . . . . . . . 10 (𝜑 → (( I ↾ 𝐾)‘𝑊) = 𝑊)
120117, 119oveq12d 7174 . . . . . . . . 9 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = (𝑀 × 𝑊))
1214, 11, 48ringrz 19338 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ 𝑀𝐾) → (𝑀 × 𝑊) = 𝑊)
12238, 9, 121syl2anc 586 . . . . . . . . 9 (𝜑 → (𝑀 × 𝑊) = 𝑊)
123120, 122eqtrd 2856 . . . . . . . 8 (𝜑 → (((𝐾 × {𝑀})‘𝑊) × (( I ↾ 𝐾)‘𝑊)) = 𝑊)
124115, 123eqtrd 2856 . . . . . . 7 (𝜑 → (((𝐾 × {𝑀}) ∘f × ( I ↾ 𝐾))‘𝑊) = 𝑊)
125109, 124eqtrd 2856 . . . . . 6 (𝜑 → ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)
126 fniniseg 6830 . . . . . . 7 ((𝑂‘(𝑀 · 𝑋)) Fn 𝐾 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12727, 126syl 17 . . . . . 6 (𝜑 → (𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ↔ (𝑊𝐾 ∧ ((𝑂‘(𝑀 · 𝑋))‘𝑊) = 𝑊)))
12878, 125, 127mpbir2and 711 . . . . 5 (𝜑𝑊 ∈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
129128snssd 4742 . . . 4 (𝜑 → {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
130 hashsng 13731 . . . . . . 7 (𝑊𝐾 → (♯‘{𝑊}) = 1)
13178, 130syl 17 . . . . . 6 (𝜑 → (♯‘{𝑊}) = 1)
132 ssdomg 8555 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V → ({𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
13333, 129, 132mpsyl 68 . . . . . . . . 9 (𝜑 → {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
134 snfi 8594 . . . . . . . . . 10 {𝑊} ∈ Fin
135 hashdom 13741 . . . . . . . . . 10 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ V) → ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
136134, 33, 135mp2an 690 . . . . . . . . 9 ((♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≼ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
137133, 136sylibr 236 . . . . . . . 8 (𝜑 → (♯‘{𝑊}) ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
138131, 137eqbrtrrd 5090 . . . . . . 7 (𝜑 → 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
139 hashcl 13718 . . . . . . . . . 10 (((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
14076, 139syl 17 . . . . . . . . 9 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℕ0)
141140nn0red 11957 . . . . . . . 8 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ)
142 1re 10641 . . . . . . . 8 1 ∈ ℝ
143 letri3 10726 . . . . . . . 8 (((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ∈ ℝ ∧ 1 ∈ ℝ) → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
144141, 142, 143sylancl 588 . . . . . . 7 (𝜑 → ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1 ↔ ((♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ≤ 1 ∧ 1 ≤ (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))))
14574, 138, 144mpbir2and 711 . . . . . 6 (𝜑 → (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) = 1)
146131, 145eqtr4d 2859 . . . . 5 (𝜑 → (♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
147 hashen 13708 . . . . . 6 (({𝑊} ∈ Fin ∧ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin) → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
148134, 76, 147sylancr 589 . . . . 5 (𝜑 → ((♯‘{𝑊}) = (♯‘((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) ↔ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})))
149146, 148mpbid 234 . . . 4 (𝜑 → {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
150 fisseneq 8729 . . . 4 ((((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∈ Fin ∧ {𝑊} ⊆ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}) ∧ {𝑊} ≈ ((𝑂‘(𝑀 · 𝑋)) “ {𝑊})) → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15176, 129, 149, 150syl3anc 1367 . . 3 (𝜑 → {𝑊} = ((𝑂‘(𝑀 · 𝑋)) “ {𝑊}))
15230, 151eleqtrrd 2916 . 2 (𝜑𝑁 ∈ {𝑊})
153 elsni 4584 . 2 (𝑁 ∈ {𝑊} → 𝑁 = 𝑊)
154152, 153syl 17 1 (𝜑𝑁 = 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  cdif 3933  wss 3936  {csn 4567   class class class wbr 5066   I cid 5459   × cxp 5553  ccnv 5554  cres 5557  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  f cof 7407  cen 8506  cdom 8507  Fincfn 8509  cr 10536  1c1 10538  cle 10676  0cn0 11898  chash 13691  Basecbs 16483  .rcmulr 16566  Scalarcsca 16568   ·𝑠 cvsca 16569  0gc0g 16713  s cpws 16720  .gcmg 18224  mulGrpcmgp 19239  Ringcrg 19297  CRingccrg 19298   RingHom crh 19464  AssAlgcasa 20082  algSccascl 20084  var1cv1 20344  Poly1cpl1 20345  coe1cco1 20346  eval1ce1 20477   deg1 cdg1 24648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-fz 12894  df-fzo 13035  df-seq 13371  df-hash 13692  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-srg 19256  df-ring 19299  df-cring 19300  df-rnghom 19467  df-subrg 19533  df-lmod 19636  df-lss 19704  df-lsp 19744  df-assa 20085  df-asp 20086  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-evls 20286  df-evl 20287  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-coe1 20351  df-evl1 20479  df-cnfld 20546  df-mdeg 24649  df-deg1 24650
This theorem is referenced by:  fta1b  24763
  Copyright terms: Public domain W3C validator