Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6lem2 Structured version   Visualization version   GIF version

Theorem hdmap1l6lem2 36617
 Description: Lemma for hdmap1l6 36630. Part (6) in [Baer] p. 47, lines 20-22. (Contributed by NM, 13-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
hdmap1l6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
hdmap1l6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
hdmap1l6lem2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 𝐸)}))

Proof of Theorem hdmap1l6lem2
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 eqid 2621 . . . 4 (LSubSp‘𝑈) = (LSubSp‘𝑈)
5 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
61, 3, 5dvhlmod 35918 . . . . 5 (𝜑𝑈 ∈ LMod)
7 hdmap1l6e.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
87eldifad 3572 . . . . . 6 (𝜑𝑌𝑉)
9 hdmap1l6.v . . . . . . 7 𝑉 = (Base‘𝑈)
10 hdmap1l6.n . . . . . . 7 𝑁 = (LSpan‘𝑈)
119, 4, 10lspsncl 18917 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
126, 8, 11syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈))
13 hdmap1l6e.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3572 . . . . . 6 (𝜑𝑍𝑉)
159, 4, 10lspsncl 18917 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
166, 14, 15syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈))
17 eqid 2621 . . . . . 6 (LSSum‘𝑈) = (LSSum‘𝑈)
184, 17lsmcl 19023 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
196, 12, 16, 18syl3anc 1323 . . . 4 (𝜑 → ((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∈ (LSubSp‘𝑈))
20 hdmap1l6cl.x . . . . . . . 8 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2120eldifad 3572 . . . . . . 7 (𝜑𝑋𝑉)
22 hdmap1l6.p . . . . . . . . 9 + = (+g𝑈)
239, 22lmodvacl 18817 . . . . . . . 8 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
246, 8, 14, 23syl3anc 1323 . . . . . . 7 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
25 hdmap1l6.s . . . . . . . 8 = (-g𝑈)
269, 25lmodvsubcl 18848 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝑋𝑉 ∧ (𝑌 + 𝑍) ∈ 𝑉) → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
276, 21, 24, 26syl3anc 1323 . . . . . 6 (𝜑 → (𝑋 (𝑌 + 𝑍)) ∈ 𝑉)
289, 4, 10lspsncl 18917 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝑋 (𝑌 + 𝑍)) ∈ 𝑉) → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
296, 27, 28syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈))
309, 4, 10lspsncl 18917 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
316, 21, 30syl2anc 692 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈))
324, 17lsmcl 19023 . . . . 5 ((𝑈 ∈ LMod ∧ (𝑁‘{(𝑋 (𝑌 + 𝑍))}) ∈ (LSubSp‘𝑈) ∧ (𝑁‘{𝑋}) ∈ (LSubSp‘𝑈)) → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
336, 29, 31, 32syl3anc 1323 . . . 4 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})) ∈ (LSubSp‘𝑈))
341, 2, 3, 4, 5, 19, 33mapdin 36470 . . 3 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
35 hdmap1l6.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
36 eqid 2621 . . . . . 6 (LSSum‘𝐶) = (LSSum‘𝐶)
371, 2, 3, 4, 17, 35, 36, 5, 12, 16mapdlsm 36472 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))))
38 hdmap1l6.fg . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
39 hdmap1l6c.o . . . . . . . . 9 0 = (0g𝑈)
40 hdmap1l6.d . . . . . . . . 9 𝐷 = (Base‘𝐶)
41 hdmap1l6.r . . . . . . . . 9 𝑅 = (-g𝐶)
42 hdmap1l6.l . . . . . . . . 9 𝐿 = (LSpan‘𝐶)
43 hdmap1l6.i . . . . . . . . 9 𝐼 = ((HDMap1‘𝐾)‘𝑊)
44 hdmap1l6.f . . . . . . . . 9 (𝜑𝐹𝐷)
45 hdmap1l6.mn . . . . . . . . . . 11 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
461, 3, 5dvhlvec 35917 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ LVec)
47 hdmap1l6.yz . . . . . . . . . . . . 13 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
48 hdmap1l6e.xn . . . . . . . . . . . . 13 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
499, 39, 10, 46, 8, 13, 21, 47, 48lspindp2 19075 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
5049simpld 475 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
511, 3, 9, 39, 10, 35, 40, 42, 2, 43, 5, 44, 45, 50, 20, 8hdmap1cl 36613 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
5238, 51eqeltrrd 2699 . . . . . . . . 9 (𝜑𝐺𝐷)
531, 3, 9, 25, 39, 10, 35, 40, 41, 42, 2, 43, 5, 20, 44, 7, 52, 50, 45hdmap1eq 36610 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))))
5438, 53mpbid 222 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))
5554simpld 475 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}))
56 hdmap1l6.fe . . . . . . . 8 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
579, 39, 10, 46, 7, 14, 21, 47, 48lspindp1 19073 . . . . . . . . . . . 12 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5857simpld 475 . . . . . . . . . . 11 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
591, 3, 9, 39, 10, 35, 40, 42, 2, 43, 5, 44, 45, 58, 20, 14hdmap1cl 36613 . . . . . . . . . 10 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
6056, 59eqeltrrd 2699 . . . . . . . . 9 (𝜑𝐸𝐷)
611, 3, 9, 25, 39, 10, 35, 40, 41, 42, 2, 43, 5, 20, 44, 13, 60, 58, 45hdmap1eq 36610 . . . . . . . 8 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸 ↔ ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)}))))
6256, 61mpbid 222 . . . . . . 7 (𝜑 → ((𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑍)})) = (𝐿‘{(𝐹𝑅𝐸)})))
6362simpld 475 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{𝑍})) = (𝐿‘{𝐸}))
6455, 63oveq12d 6633 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{𝑌}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑍}))) = ((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})))
6537, 64eqtrd 2655 . . . 4 (𝜑 → (𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) = ((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})))
661, 2, 3, 4, 17, 35, 36, 5, 29, 31mapdlsm 36472 . . . . 5 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))))
67 hdmap1l6.a . . . . . . 7 = (+g𝐶)
68 hdmap1l6.q . . . . . . 7 𝑄 = (0g𝐶)
691, 3, 9, 22, 25, 39, 10, 35, 40, 67, 41, 68, 42, 2, 43, 5, 44, 20, 45, 7, 13, 48, 47, 38, 56hdmap1l6lem1 36616 . . . . . 6 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
7069, 45oveq12d 6633 . . . . 5 (𝜑 → ((𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))}))(LSSum‘𝐶)(𝑀‘(𝑁‘{𝑋}))) = ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹})))
7166, 70eqtrd 2655 . . . 4 (𝜑 → (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))) = ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹})))
7265, 71ineq12d 3799 . . 3 (𝜑 → ((𝑀‘((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍}))) ∩ (𝑀‘((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹}))))
7334, 72eqtrd 2655 . 2 (𝜑 → (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))) = (((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹}))))
749, 25, 39, 17, 10, 46, 21, 48, 47, 7, 13, 22baerlem5b 36523 . . 3 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) = (((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋}))))
7574fveq2d 6162 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝑀‘(((𝑁‘{𝑌})(LSSum‘𝑈)(𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 + 𝑍))})(LSSum‘𝑈)(𝑁‘{𝑋})))))
761, 35, 5lcdlvec 36399 . . 3 (𝜑𝐶 ∈ LVec)
771, 2, 3, 9, 10, 35, 40, 42, 5, 44, 45, 21, 8, 52, 55, 14, 60, 63, 48mapdindp 36479 . . 3 (𝜑 → ¬ 𝐹 ∈ (𝐿‘{𝐺, 𝐸}))
781, 2, 3, 9, 10, 35, 40, 42, 5, 52, 55, 8, 14, 60, 63, 47mapdncol 36478 . . 3 (𝜑 → (𝐿‘{𝐺}) ≠ (𝐿‘{𝐸}))
791, 2, 3, 9, 10, 35, 40, 42, 5, 52, 55, 39, 68, 7mapdn0 36477 . . 3 (𝜑𝐺 ∈ (𝐷 ∖ {𝑄}))
801, 2, 3, 9, 10, 35, 40, 42, 5, 60, 63, 39, 68, 13mapdn0 36477 . . 3 (𝜑𝐸 ∈ (𝐷 ∖ {𝑄}))
8140, 41, 68, 36, 42, 76, 44, 77, 78, 79, 80, 67baerlem5b 36523 . 2 (𝜑 → (𝐿‘{(𝐺 𝐸)}) = (((𝐿‘{𝐺})(LSSum‘𝐶)(𝐿‘{𝐸})) ∩ ((𝐿‘{(𝐹𝑅(𝐺 𝐸))})(LSSum‘𝐶)(𝐿‘{𝐹}))))
8273, 75, 813eqtr4d 2665 1 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 𝐸)}))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790   ∖ cdif 3557   ∩ cin 3559  {csn 4155  {cpr 4157  ⟨cotp 4163  ‘cfv 5857  (class class class)co 6615  Basecbs 15800  +gcplusg 15881  0gc0g 16040  -gcsg 17364  LSSumclsm 17989  LModclmod 18803  LSubSpclss 18872  LSpanclspn 18911  HLchlt 34156  LHypclh 34789  DVecHcdvh 35886  LCDualclcd 36394  mapdcmpd 36432  HDMap1chdma1 36600 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-riotaBAD 33758 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-ot 4164  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-undef 7359  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-map 7819  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-n0 11253  df-z 11338  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-0g 16042  df-mre 16186  df-mrc 16187  df-acs 16189  df-preset 16868  df-poset 16886  df-plt 16898  df-lub 16914  df-glb 16915  df-join 16916  df-meet 16917  df-p0 16979  df-p1 16980  df-lat 16986  df-clat 17048  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-cntz 17690  df-oppg 17716  df-lsm 17991  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-oppr 18563  df-dvdsr 18581  df-unit 18582  df-invr 18612  df-dvr 18623  df-drng 18689  df-lmod 18805  df-lss 18873  df-lsp 18912  df-lvec 19043  df-lsatoms 33782  df-lshyp 33783  df-lcv 33825  df-lfl 33864  df-lkr 33892  df-ldual 33930  df-oposet 33982  df-ol 33984  df-oml 33985  df-covers 34072  df-ats 34073  df-atl 34104  df-cvlat 34128  df-hlat 34157  df-llines 34303  df-lplanes 34304  df-lvols 34305  df-lines 34306  df-psubsp 34308  df-pmap 34309  df-padd 34601  df-lhyp 34793  df-laut 34794  df-ldil 34909  df-ltrn 34910  df-trl 34965  df-tgrp 35550  df-tendo 35562  df-edring 35564  df-dveca 35810  df-disoa 35837  df-dvech 35887  df-dib 35947  df-dic 35981  df-dih 36037  df-doch 36156  df-djh 36203  df-lcdual 36395  df-mapd 36433  df-hdmap1 36602 This theorem is referenced by:  hdmap1l6a  36618
 Copyright terms: Public domain W3C validator