Home Metamath Proof ExplorerTheorem List (p. 390 of 424) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-27745) Hilbert Space Explorer (27746-29270) Users' Mathboxes (29271-42316)

Theorem List for Metamath Proof Explorer - 38901-39000   *Has distinct variable group(s)
TypeLabelDescription
Statement

20.30.7  Theorems proved using Virtual Deduction with mmj2 assistance

Theoremsimplbi2VD 38901 Virtual deduction proof of simplbi2 654. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 h1:: ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) 3:1,?: e0a 38819 ⊢ ((𝜓 ∧ 𝜒) → 𝜑) qed:3,?: e0a 38819 ⊢ (𝜓 → (𝜒 → 𝜑))
The proof of simplbi2 654 was automatically derived from it. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 ↔ (𝜓𝜒))       (𝜓 → (𝜒𝜑))

Theorem3ornot23VD 38902 Virtual deduction proof of 3ornot23 38535. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
1::
 ⊢ (   (¬ 𝜑 ∧ ¬ 𝜓)   ▶   (¬ 𝜑 ∧ ¬ 𝜓)   ) 2:: ⊢ (   (¬ 𝜑 ∧ ¬ 𝜓)   ,   (𝜒 ∨ 𝜑 ∨ 𝜓)   ▶   (𝜒 ∨ 𝜑 ∨ 𝜓)   ) 3:1,?: e1a 38672 ⊢ (   (¬ 𝜑 ∧ ¬ 𝜓)   ▶   ¬ 𝜑   ) 4:1,?: e1a 38672 ⊢ (   (¬ 𝜑 ∧ ¬ 𝜓)   ▶   ¬ 𝜓   ) 5:3,4,?: e11 38733 ⊢ (   (¬ 𝜑 ∧ ¬ 𝜓)   ▶   ¬ (𝜑 ∨ 𝜓)   ) 6:2,?: e2 38676 ⊢ (   (¬ 𝜑 ∧ ¬ 𝜓)   ,   (𝜒 ∨ 𝜑 ∨ 𝜓)   ▶   (𝜒 ∨ (𝜑 ∨ 𝜓))   ) 7:5,6,?: e12 38771 ⊢ (   (¬ 𝜑 ∧ ¬ 𝜓)   ,   (𝜒 ∨ 𝜑 ∨ 𝜓)   ▶   𝜒   ) 8:7: ⊢ (   (¬ 𝜑 ∧ ¬ 𝜓)   ▶   ((𝜒 ∨ 𝜑 ∨ 𝜓) → 𝜒)   ) qed:8: ⊢ ((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒 ∨ 𝜑 ∨ 𝜓) → 𝜒))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((¬ 𝜑 ∧ ¬ 𝜓) → ((𝜒𝜑𝜓) → 𝜒))

Theoremorbi1rVD 38903 Virtual deduction proof of orbi1r 38536. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   (𝜑 ↔ 𝜓)   ▶   (𝜑 ↔ 𝜓)   ) 2:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ∨ 𝜑)    ▶   (𝜒 ∨ 𝜑)   ) 3:2,?: e2 38676 ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ∨ 𝜑)    ▶   (𝜑 ∨ 𝜒)   ) 4:1,3,?: e12 38771 ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ∨ 𝜑)    ▶   (𝜓 ∨ 𝜒)   ) 5:4,?: e2 38676 ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ∨ 𝜑)    ▶   (𝜒 ∨ 𝜓)   ) 6:5: ⊢ (   (𝜑 ↔ 𝜓)   ▶   ((𝜒 ∨ 𝜑) → (𝜒 ∨ 𝜓))   ) 7:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ∨ 𝜓)    ▶   (𝜒 ∨ 𝜓)   ) 8:7,?: e2 38676 ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ∨ 𝜓)    ▶   (𝜓 ∨ 𝜒)   ) 9:1,8,?: e12 38771 ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ∨ 𝜓)    ▶   (𝜑 ∨ 𝜒)   ) 10:9,?: e2 38676 ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ∨ 𝜓)    ▶   (𝜒 ∨ 𝜑)   ) 11:10: ⊢ (   (𝜑 ↔ 𝜓)   ▶   ((𝜒 ∨ 𝜓) → (𝜒 ∨ 𝜑))   ) 12:6,11,?: e11 38733 ⊢ (   (𝜑 ↔ 𝜓)   ▶   ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓))   ) qed:12: ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ∨ 𝜑) ↔ (𝜒 ∨ 𝜓)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜑) ↔ (𝜒𝜓)))

Theorembitr3VD 38904 Virtual deduction proof of bitr3 342. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   (𝜑 ↔ 𝜓)   ▶   (𝜑 ↔ 𝜓)   ) 2:1,?: e1a 38672 ⊢ (   (𝜑 ↔ 𝜓)   ▶   (𝜓 ↔ 𝜑)   ) 3:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜑 ↔ 𝜒)    ▶   (𝜑 ↔ 𝜒)   ) 4:3,?: e2 38676 ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜑 ↔ 𝜒)    ▶   (𝜒 ↔ 𝜑)   ) 5:2,4,?: e12 38771 ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜑 ↔ 𝜒)    ▶   (𝜓 ↔ 𝜒)   ) 6:5: ⊢ (   (𝜑 ↔ 𝜓)   ▶   ((𝜑 ↔ 𝜒) → (𝜓 ↔ 𝜒))   ) qed:6: ⊢ ((𝜑 ↔ 𝜓) → ((𝜑 ↔ 𝜒) → (𝜓 ↔ 𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜑𝜒) → (𝜓𝜒)))

Theorem3orbi123VD 38905 Virtual deduction proof of 3orbi123 38537. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂))   ▶   ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂))   ) 2:1,?: e1a 38672 ⊢ (   ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂))   ▶   (𝜑 ↔ 𝜓)   ) 3:1,?: e1a 38672 ⊢ (   ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂))   ▶   (𝜒 ↔ 𝜃)   ) 4:1,?: e1a 38672 ⊢ (   ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂))   ▶   (𝜏 ↔ 𝜂)   ) 5:2,3,?: e11 38733 ⊢ (   ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂))   ▶   ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃))   ) 6:5,4,?: e11 38733 ⊢ (   ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂))   ▶   (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂))   ) 7:?: ⊢ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ (𝜑 ∨ 𝜒 ∨ 𝜏)) 8:6,7,?: e10 38739 ⊢ (   ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂))   ▶   ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂))   ) 9:?: ⊢ (((𝜓 ∨ 𝜃) ∨ 𝜂) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) 10:8,9,?: e10 38739 ⊢ (   ((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂))   ▶   ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂))   ) qed:10: ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂)))

Theoremsbc3orgVD 38906 Virtual deduction proof of sbc3orgOLD 38562. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:1,?: e1a 38672 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒))   ) 3:: ⊢ (((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) 32:3: ⊢ ∀𝑥(((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒)) 33:1,32,?: e10 38739 ⊢ (   𝐴 ∈ 𝐵   ▶   [𝐴 / 𝑥](((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ (𝜑 ∨ 𝜓 ∨ 𝜒))   ) 4:1,33,?: e11 38733 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]((𝜑 ∨ 𝜓) ∨ 𝜒) ↔ [𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒))   ) 5:2,4,?: e11 38733 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒))   ) 6:1,?: e1a 38672 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓))   ) 7:6,?: e1a 38672 ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥](𝜑 ∨ 𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))   ) 8:5,7,?: e11 38733 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ (([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒))   ) 9:?: ⊢ ((([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓) ∨ [𝐴 / 𝑥]𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒)) 10:8,9,?: e10 38739 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒))   ) qed:10: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ([𝐴 / 𝑥]𝜑 ∨ [𝐴 / 𝑥]𝜓 ∨ [𝐴 / 𝑥]𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥](𝜑𝜓𝜒) ↔ ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))

Theorem19.21a3con13vVD 38907* Virtual deduction proof of alrim3con13v 38563. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   (𝜑 → ∀𝑥𝜑)    ▶   (𝜑 → ∀𝑥𝜑)   ) 2:: ⊢ (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 ∧ 𝜑 ∧ 𝜒)   ▶   (𝜓 ∧ 𝜑 ∧ 𝜒)   ) 3:2,?: e2 38676 ⊢ (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 ∧ 𝜑 ∧ 𝜒)   ▶   𝜓   ) 4:2,?: e2 38676 ⊢ (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 ∧ 𝜑 ∧ 𝜒)   ▶   𝜑   ) 5:2,?: e2 38676 ⊢ (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 ∧ 𝜑 ∧ 𝜒)   ▶   𝜒   ) 6:1,4,?: e12 38771 ⊢ (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 ∧ 𝜑 ∧ 𝜒)   ▶   ∀𝑥𝜑   ) 7:3,?: e2 38676 ⊢ (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 ∧ 𝜑 ∧ 𝜒)   ▶   ∀𝑥𝜓   ) 8:5,?: e2 38676 ⊢ (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 ∧ 𝜑 ∧ 𝜒)   ▶   ∀𝑥𝜒   ) 9:7,6,8,?: e222 38681 ⊢ (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 ∧ 𝜑 ∧ 𝜒)   ▶   (∀𝑥𝜓 ∧ ∀𝑥𝜑 ∧ ∀𝑥𝜒)   ) 10:9,?: e2 38676 ⊢ (   (𝜑 → ∀𝑥𝜑)   ,   (𝜓 ∧ 𝜑 ∧ 𝜒)   ▶   ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒)   ) 11:10:in2 ⊢ (   (𝜑 → ∀𝑥𝜑)   ▶   ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒))   ) qed:11:in1 ⊢ ((𝜑 → ∀𝑥𝜑) → ((𝜓 ∧ 𝜑 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜑 ∧ 𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → ∀𝑥𝜑) → ((𝜓𝜑𝜒) → ∀𝑥(𝜓𝜑𝜒)))

TheoremexbirVD 38908 Virtual deduction proof of exbir 38504. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))    ▶   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))   ) 2:: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))   ,    (𝜑 ∧ 𝜓)   ▶   (𝜑 ∧ 𝜓)   ) 3:: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))   ,    (𝜑 ∧ 𝜓), 𝜃   ▶   𝜃   ) 5:1,2,?: e12 38771 ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)), (𝜑 ∧ 𝜓)   ▶   (𝜒 ↔ 𝜃)   ) 6:3,5,?: e32 38805 ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)), (𝜑 ∧ 𝜓), 𝜃   ▶   𝜒   ) 7:6: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)), (𝜑 ∧ 𝜓)   ▶   (𝜃 → 𝜒)   ) 8:7: ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))    ▶   ((𝜑 ∧ 𝜓) → (𝜃 → 𝜒))   ) 9:8,?: e1a 38672 ⊢ (   ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃))   ▶   (𝜑 → (𝜓 → (𝜃 → 𝜒)))   ) qed:9: ⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒))))
(Contributed by Alan Sare, 13-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))

TheoremexbiriVD 38909 Virtual deduction proof of exbiri 651. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 h1:: ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) 2:: ⊢ (   𝜑   ▶   𝜑   ) 3:: ⊢ (   𝜑   ,   𝜓   ▶   𝜓   ) 4:: ⊢ (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜃   ) 5:2,1,?: e10 38739 ⊢ (   𝜑   ▶   (𝜓 → (𝜒 ↔ 𝜃))   ) 6:3,5,?: e21 38777 ⊢ (   𝜑   ,   𝜓   ▶   (𝜒 ↔ 𝜃)   ) 7:4,6,?: e32 38805 ⊢ (   𝜑   ,   𝜓   ,   𝜃   ▶   𝜒   ) 8:7: ⊢ (   𝜑   ,   𝜓   ▶   (𝜃 → 𝜒)   ) 9:8: ⊢ (   𝜑   ▶   (𝜓 → (𝜃 → 𝜒))   ) qed:9: ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → (𝜓 → (𝜃𝜒)))

Theoremrspsbc2VD 38910* Virtual deduction proof of rspsbc2 38564. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ▶   𝐶 ∈ 𝐷   ) 3:: ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑   ) 4:1,3,?: e13 38795 ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   [𝐴 / 𝑥]∀𝑦 ∈ 𝐷𝜑   ) 5:1,4,?: e13 38795 ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑦 ∈ 𝐷[𝐴 / 𝑥]𝜑   ) 6:2,5,?: e23 38802 ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   [𝐶 / 𝑦][𝐴 / 𝑥]𝜑   ) 7:6: ⊢ (   𝐴 ∈ 𝐵   ,   𝐶 ∈ 𝐷   ▶   (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)   ) 8:7: ⊢ (   𝐴 ∈ 𝐵   ▶   (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑))   ) qed:8: ⊢ (𝐴 ∈ 𝐵 → (𝐶 ∈ 𝐷 → (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → [𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (𝐶𝐷 → (∀𝑥𝐵𝑦𝐷 𝜑[𝐶 / 𝑦][𝐴 / 𝑥]𝜑)))

Theorem3impexpVD 38911 Virtual deduction proof of 3impexp 1287. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ) 2:: ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) 3:1,2,?: e10 38739 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ▶   (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃)   ) 4:3,?: e1a 38672 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ▶   ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃))   ) 5:4,?: e1a 38672 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ▶   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ) 6:5: ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) → (𝜑 → (𝜓 → (𝜒 → 𝜃)))) 7:: ⊢ (   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ▶   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ) 8:7,?: e1a 38672 ⊢ (   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ▶   ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃))   ) 9:8,?: e1a 38672 ⊢ (   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ▶   (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃)   ) 10:2,9,?: e01 38736 ⊢ (   (𝜑 → (𝜓 → (𝜒 → 𝜃)))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)   ) 11:10: ⊢ ((𝜑 → (𝜓 → (𝜒 → 𝜃))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) qed:6,11,?: e00 38815 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))

Theorem3impexpbicomVD 38912 Virtual deduction proof of 3impexpbicom 38505. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ) 2:: ⊢ ((𝜃 ↔ 𝜏) ↔ (𝜏 ↔ 𝜃)) 3:1,2,?: e10 38739 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃))   ) 4:3,?: e1a 38672 ⊢ (   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ▶   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ) 5:4: ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) → (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) 6:: ⊢ (   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ▶   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ) 7:6,?: e1a 38672 ⊢ (   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜏 ↔ 𝜃))   ) 8:7,2,?: e10 38739 ⊢ (   (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))   ▶   ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))   ) 9:8: ⊢ ((𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) → ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏))) qed:5,9,?: e00 38815 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))

Theorem3impexpbicomiVD 38913 Virtual deduction proof of 3impexpbicomi 38506. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 h1:: ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) qed:1,?: e0a 38819 ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓𝜒) → (𝜃𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))

Theoremsbcel1gvOLD 38914* Class substitution into a membership relation. (Contributed by NM, 17-Nov-2006.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) Obsolete as of 17-Aug-2018. Use sbcel1v 3489 instead. (New usage is discouraged.) (Proof modification is discouraged.)
(𝐴𝑉 → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))

TheoremsbcoreleleqVD 38915* Virtual deduction proof of sbcoreleleq 38565. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:1,?: e1a 38672 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴)   ) 3:1,?: e1a 38672 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑦]𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)   ) 4:1,?: e1a 38672 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑦]𝑥 = 𝑦 ↔ 𝑥 = 𝐴)   ) 5:2,3,4,?: e111 38719 ⊢ (   𝐴 ∈ 𝐵   ▶   ((𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))   ) 6:1,?: e1a 38672 ⊢ (   𝐴 ∈ 𝐵    ▶   ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ ([𝐴 / 𝑦]𝑥 ∈ 𝑦 ∨ [𝐴 / 𝑦]𝑦 ∈ 𝑥 ∨ [𝐴 / 𝑦]𝑥 = 𝑦))   ) 7:5,6: e11 38733 ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴))   ) qed:7: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 ∨ 𝐴 ∈ 𝑥 ∨ 𝑥 = 𝐴)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑦](𝑥𝑦𝑦𝑥𝑥 = 𝑦) ↔ (𝑥𝐴𝐴𝑥𝑥 = 𝐴)))

Theoremhbra2VD 38916* Virtual deduction proof of nfra2 2943. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑 → ∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 2:: ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔ ∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 3:1,2,?: e00 38815 ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 → ∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 4:2: ⊢ ∀𝑦(∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔ ∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 5:4,?: e0a 38819 ⊢ (∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔ ∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) qed:3,5,?: e00 38815 ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 → ∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝑥𝐴𝑦𝐵 𝜑)

TheoremtratrbVD 38917* Virtual deduction proof of tratrb 38566. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)    ▶   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ) 2:1,?: e1a 38672 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   Tr 𝐴   ) 3:1,?: e1a 38672 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)    ▶   ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 4:1,?: e1a 38672 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   𝐵 ∈ 𝐴   ) 5:: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ) 6:5,?: e2 38676 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑥 ∈ 𝑦   ) 7:5,?: e2 38676 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑦 ∈ 𝐵   ) 8:2,7,4,?: e121 38701 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑦 ∈ 𝐴   ) 9:2,6,8,?: e122 38698 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑥 ∈ 𝐴   ) 10:: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝐵 ∈ 𝑥   ▶   𝐵 ∈ 𝑥   ) 11:6,7,10,?: e223 38680 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝐵 ∈ 𝑥   ▶   (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥)   ) 12:11: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   (𝐵 ∈ 𝑥 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥))   ) 13:: ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ∧ 𝐵 ∈ 𝑥) 14:12,13,?: e20 38774 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   ¬ 𝐵 ∈ 𝑥   ) 15:: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵   ▶   𝑥 = 𝐵   ) 16:7,15,?: e23 38802 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵   ▶   𝑦 ∈ 𝑥   ) 17:6,16,?: e23 38802 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵), 𝑥 = 𝐵   ▶   (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥)   ) 18:17: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   (𝑥 = 𝐵 → (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥))   ) 19:: ⊢ ¬ (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) 20:18,19,?: e20 38774 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   ¬ 𝑥 = 𝐵   ) 21:3,?: e1a 38672 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 22:21,9,4,?: e121 38701 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   [𝑥 / 𝑥][𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 23:22,?: e2 38676 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   [𝐵 / 𝑦](𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 24:4,23,?: e12 38771 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   (𝑥 ∈ 𝐵 ∨ 𝐵 ∈ 𝑥 ∨ 𝑥 = 𝐵)   ) 25:14,20,24,?: e222 38681 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴), (𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)   ▶   𝑥 ∈ 𝐵   ) 26:25: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   ((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)   ) 27:: ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 28:27,?: e0a 38819 ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑦(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)) 29:28,26: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)    ▶   ∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)   ) 30:: ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) → ∀𝑥∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 31:30,?: e0a 38819 ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → ∀𝑥(Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)) 32:31,29: ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑥 ∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) → 𝑥 ∈ 𝐵)   ) 33:32,?: e1a 38672 ⊢ (   (Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴)   ▶   Tr 𝐵   ) qed:33: ⊢ ((Tr 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦) ∧ 𝐵 ∈ 𝐴) → Tr 𝐵)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((Tr 𝐴 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦𝑦𝑥𝑥 = 𝑦) ∧ 𝐵𝐴) → Tr 𝐵)

Theoremal2imVD 38918 Virtual deduction proof of al2im 1740. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   ∀𝑥(𝜑 → (𝜓 → 𝜒))    ▶   ∀𝑥(𝜑 → (𝜓 → 𝜒))   ) 2:1,?: e1a 38672 ⊢ (   ∀𝑥(𝜑 → (𝜓 → 𝜒))    ▶   (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒))   ) 3:: ⊢ (∀𝑥(𝜓 → 𝜒) → (∀𝑥𝜓 → ∀𝑥𝜒)) 4:2,3,?: e10 38739 ⊢ (   ∀𝑥(𝜑 → (𝜓 → 𝜒))    ▶   (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))   ) qed:4: ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))

Theoremsyl5impVD 38919 Virtual deduction proof of syl5imp 38538. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (   (𝜑 → (𝜓 → 𝜒))   ▶   (𝜑 → (𝜓 → 𝜒))   ) 2:1,?: e1a 38672 ⊢ (   (𝜑 → (𝜓 → 𝜒))   ▶   (𝜓 → (𝜑 → 𝜒))   ) 3:: ⊢ (   (𝜑 → (𝜓 → 𝜒))   ,   (𝜃 → 𝜓)   ▶   (𝜃 → 𝜓)   ) 4:3,2,?: e21 38777 ⊢ (   (𝜑 → (𝜓 → 𝜒))   ,   (𝜃 → 𝜓)   ▶   (𝜃 → (𝜑 → 𝜒))   ) 5:4,?: e2 38676 ⊢ (   (𝜑 → (𝜓 → 𝜒))   ,   (𝜃 → 𝜓)   ▶   (𝜑 → (𝜃 → 𝜒))   ) 6:5: ⊢ (   (𝜑 → (𝜓 → 𝜒))   ▶   ((𝜃 → 𝜓) → (𝜑 → (𝜃 → 𝜒)))   ) qed:6: ⊢ ((𝜑 → (𝜓 → 𝜒)) → ((𝜃 → 𝜓) → (𝜑 → (𝜃 → 𝜒))))
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 → (𝜓𝜒)) → ((𝜃𝜓) → (𝜑 → (𝜃𝜒))))

TheoremidiVD 38920 Virtual deduction proof of idiALT 38503. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 h1:: ⊢ 𝜑 qed:1,?: e0a 38819 ⊢ 𝜑
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       𝜑

TheoremancomstVD 38921 Closed form of ancoms 469. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) qed:1,?: e0a 38819 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒))
The proof of ancomst 468 is derived automatically from it. (Contributed by Alan Sare, 25-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(((𝜑𝜓) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))

Theoremssralv2VD 38922* Quantification restricted to a subclass for two quantifiers. ssralv 3658 for two quantifiers. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ssralv2 38557 is ssralv2VD 38922 without virtual deductions and was automatically derived from ssralv2VD 38922.
 1:: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ▶   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ) 2:: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑   ) 3:1: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ▶   𝐴 ⊆ 𝐵   ) 4:3,2: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐷𝜑   ) 5:4: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷𝜑)   ) 6:5: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐷𝜑)   ) 7:: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴   ▶   𝑥 ∈ 𝐴   ) 8:7,6: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴   ▶   ∀𝑦 ∈ 𝐷𝜑   ) 9:1: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ▶   𝐶 ⊆ 𝐷   ) 10:9,8: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑, 𝑥 ∈ 𝐴   ▶   ∀𝑦 ∈ 𝐶𝜑   ) 11:10: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶𝜑)   ) 12:: ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → ∀𝑥(𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) 13:: ⊢ (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑) 14:12,13,11: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐶𝜑)   ) 15:14: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)   ,   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐷𝜑   ▶   ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑   ) 16:15: ⊢ (   (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)    ▶   (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑)   ) qed:16: ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (∀𝑥 ∈ 𝐵∀𝑦 ∈ 𝐷𝜑 → ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐶𝜑))
(Contributed by Alan Sare, 10-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝐴𝐵𝐶𝐷) → (∀𝑥𝐵𝑦𝐷 𝜑 → ∀𝑥𝐴𝑦𝐶 𝜑))

TheoremordelordALTVD 38923 An element of an ordinal class is ordinal. Proposition 7.6 of [TakeutiZaring] p. 36. This is an alternate proof of ordelord 5733 using the Axiom of Regularity indirectly through dford2 8502. dford2 is a weaker definition of ordinal number. Given the Axiom of Regularity, it need not be assumed that E Fr 𝐴 because this is inferred by the Axiom of Regularity. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ordelordALT 38567 is ordelordALTVD 38923 without virtual deductions and was automatically derived from ordelordALTVD 38923 using the tools program translate..without..overwriting.cmd and Metamath's minimize command.
 1:: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ) 2:1: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   Ord 𝐴   ) 3:1: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   𝐵 ∈ 𝐴   ) 4:2: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   Tr 𝐴   ) 5:2: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)   ) 6:4,3: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   𝐵 ⊆ 𝐴   ) 7:6,6,5: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥)   ) 8:: ⊢ ((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 9:8: ⊢ ∀𝑦((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 10:9: ⊢ ∀𝑦 ∈ 𝐴((𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ (𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 11:10: ⊢ (∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 12:11: ⊢ ∀𝑥(∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 13:12: ⊢ ∀𝑥 ∈ 𝐴(∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 14:13: ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑥 = 𝑦 ∨ 𝑦 ∈ 𝑥) ↔ ∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)) 15:14,5: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴(𝑥 ∈ 𝑦 ∨ 𝑦 ∈ 𝑥 ∨ 𝑥 = 𝑦)   ) 16:4,15,3: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   Tr 𝐵   ) 17:16,7: ⊢ (   (Ord 𝐴 ∧ 𝐵 ∈ 𝐴)   ▶   Ord 𝐵   ) qed:17: ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → Ord 𝐵)
(Contributed by Alan Sare, 12-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((Ord 𝐴𝐵𝐴) → Ord 𝐵)

TheoremequncomVD 38924 If a class equals the union of two other classes, then it equals the union of those two classes commuted. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncom 3750 is equncomVD 38924 without virtual deductions and was automatically derived from equncomVD 38924.
 1:: ⊢ (   𝐴 = (𝐵 ∪ 𝐶)   ▶   𝐴 = (𝐵 ∪ 𝐶)   ) 2:: ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) 3:1,2: ⊢ (   𝐴 = (𝐵 ∪ 𝐶)   ▶   𝐴 = (𝐶 ∪ 𝐵)   ) 4:3: ⊢ (𝐴 = (𝐵 ∪ 𝐶) → 𝐴 = (𝐶 ∪ 𝐵)) 5:: ⊢ (   𝐴 = (𝐶 ∪ 𝐵)   ▶   𝐴 = (𝐶 ∪ 𝐵)   ) 6:5,2: ⊢ (   𝐴 = (𝐶 ∪ 𝐵)   ▶   𝐴 = (𝐵 ∪ 𝐶)   ) 7:6: ⊢ (𝐴 = (𝐶 ∪ 𝐵) → 𝐴 = (𝐵 ∪ 𝐶)) 8:4,7: ⊢ (𝐴 = (𝐵 ∪ 𝐶) ↔ 𝐴 = (𝐶 ∪ 𝐵))
(Contributed by Alan Sare, 17-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))

TheoremequncomiVD 38925 Inference form of equncom 3750. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. equncomi 3751 is equncomiVD 38925 without virtual deductions and was automatically derived from equncomiVD 38925.
 h1:: ⊢ 𝐴 = (𝐵 ∪ 𝐶) qed:1: ⊢ 𝐴 = (𝐶 ∪ 𝐵)
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 = (𝐵𝐶)       𝐴 = (𝐶𝐵)

TheoremsucidALTVD 38926 A set belongs to its successor. Alternate proof of sucid 5792. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucidALT 38927 is sucidALTVD 38926 without virtual deductions and was automatically derived from sucidALTVD 38926. This proof illustrates that completeusersproof.cmd will generate a Metamath proof from any User's Proof which is "conventional" in the sense that no step is a virtual deduction, provided that all necessary unification theorems and transformation deductions are in set.mm. completeusersproof.cmd automatically converts such a conventional proof into a Virtual Deduction proof for which each step happens to be a 0-virtual hypothesis virtual deduction. The user does not need to search for reference theorem labels or deduction labels nor does he(she) need to use theorems and deductions which unify with reference theorems and deductions in set.mm. All that is necessary is that each theorem or deduction of the User's Proof unifies with some reference theorem or deduction in set.mm or is a semantic variation of some theorem or deduction which unifies with some reference theorem or deduction in set.mm. The definition of "semantic variation" has not been precisely defined. If it is obvious that a theorem or deduction has the same meaning as another theorem or deduction, then it is a semantic variation of the latter theorem or deduction. For example, step 4 of the User's Proof is a semantic variation of the definition (axiom) suc 𝐴 = (𝐴 ∪ {𝐴}), which unifies with df-suc 5717, a reference definition (axiom) in set.mm. Also, a theorem or deduction is said to be a semantic variation of another theorem or deduction if it is obvious upon cursory inspection that it has the same meaning as a weaker form of the latter theorem or deduction. For example, the deduction Ord 𝐴 infers 𝑥𝐴𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥) is a semantic variation of the theorem (Ord 𝐴 ↔ (Tr 𝐴 ∧ ∀𝑥𝐴 𝑦𝐴(𝑥𝑦𝑥 = 𝑦𝑦𝑥))), which unifies with the set.mm reference definition (axiom) dford2 8502.
 h1:: ⊢ 𝐴 ∈ V 2:1: ⊢ 𝐴 ∈ {𝐴} 3:2: ⊢ 𝐴 ∈ ({𝐴} ∪ 𝐴) 4:: ⊢ suc 𝐴 = ({𝐴} ∪ 𝐴) qed:3,4: ⊢ 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴

TheoremsucidALT 38927 A set belongs to its successor. This proof was automatically derived from sucidALTVD 38926 using translatewithout_overwriting.cmd and minimizing. (Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴

TheoremsucidVD 38928 A set belongs to its successor. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sucid 5792 is sucidVD 38928 without virtual deductions and was automatically derived from sucidVD 38928.
 h1:: ⊢ 𝐴 ∈ V 2:1: ⊢ 𝐴 ∈ {𝐴} 3:2: ⊢ 𝐴 ∈ (𝐴 ∪ {𝐴}) 4:: ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) qed:3,4: ⊢ 𝐴 ∈ suc 𝐴
(Contributed by Alan Sare, 18-Feb-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 ∈ V       𝐴 ∈ suc 𝐴

Theoremimbi12VD 38929 Implication form of imbi12i 340. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi12 336 is imbi12VD 38929 without virtual deductions and was automatically derived from imbi12VD 38929.
 1:: ⊢ (   (𝜑 ↔ 𝜓)   ▶   (𝜑 ↔ 𝜓)   ) 2:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   (𝜒 ↔ 𝜃)   ) 3:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜑 → 𝜒)   ▶   (𝜑 → 𝜒)   ) 4:1,3: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜑 → 𝜒)   ▶   (𝜓 → 𝜒)   ) 5:2,4: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜑 → 𝜒)   ▶   (𝜓 → 𝜃)   ) 6:5: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   ((𝜑 → 𝜒) → (𝜓 → 𝜃))   ) 7:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜓 → 𝜃)   ▶   (𝜓 → 𝜃)   ) 8:1,7: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜓 → 𝜃)   ▶   (𝜑 → 𝜃)   ) 9:2,8: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜓 → 𝜃)   ▶   (𝜑 → 𝜒)   ) 10:9: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   ((𝜓 → 𝜃) → (𝜑 → 𝜒))   ) 11:6,10: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))   ) 12:11: ⊢ (   (𝜑 ↔ 𝜓)   ▶   ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))   ) qed:12: ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜑𝜒) ↔ (𝜓𝜃))))

Theoremimbi13VD 38930 Join three logical equivalences to form equivalence of implications. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. imbi13 38546 is imbi13VD 38930 without virtual deductions and was automatically derived from imbi13VD 38930.
 1:: ⊢ (   (𝜑 ↔ 𝜓)   ▶   (𝜑 ↔ 𝜓)   ) 2:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   (𝜒 ↔ 𝜃)   ) 3:: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜏 ↔ 𝜂)   ▶   (𝜏 ↔ 𝜂)   ) 4:2,3: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜏 ↔ 𝜂)   ▶   ((𝜒 → 𝜏) ↔ (𝜃 → 𝜂))   ) 5:1,4: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)   ,   (𝜏 ↔ 𝜂)   ▶   ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂)))   ) 6:5: ⊢ (   (𝜑 ↔ 𝜓)   ,   (𝜒 ↔ 𝜃)    ▶   ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂))))   ) 7:6: ⊢ (   (𝜑 ↔ 𝜓)   ▶   ((𝜒 ↔ 𝜃) → ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂)))))   ) qed:7: ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜏 ↔ 𝜂) → ((𝜑 → (𝜒 → 𝜏)) ↔ (𝜓 → (𝜃 → 𝜂))))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → ((𝜏𝜂) → ((𝜑 → (𝜒𝜏)) ↔ (𝜓 → (𝜃𝜂))))))

Theoremsbcim2gVD 38931 Distribution of class substitution over a left-nested implication. Similar to sbcimg 3471. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcim2g 38568 is sbcim2gVD 38931 without virtual deductions and was automatically derived from sbcim2gVD 38931.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ) 3:1,2: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))   ) 4:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜓 → 𝜒) ↔ ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 5:3,4: ⊢ (   𝐴 ∈ 𝐵   ,   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 6:5: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))   ) 7:: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ) 8:4,7: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒))   ) 9:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥](𝜓 → 𝜒)))   ) 10:8,9: ⊢ (   𝐴 ∈ 𝐵   ,   ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))   ▶   [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒))   ) 11:10: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)) → [𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)))   ) 12:6,11: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒)))   ) qed:12: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓 → 𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓 → [𝐴 / 𝑥]𝜒))))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥](𝜑 → (𝜓𝜒)) ↔ ([𝐴 / 𝑥]𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))))

TheoremsbcbiVD 38932 Implication form of sbcbiiOLD 38561. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcbi 38569 is sbcbiVD 38932 without virtual deductions and was automatically derived from sbcbiVD 38932.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (   𝐴 ∈ 𝐵   ,   ∀𝑥(𝜑 ↔ 𝜓)    ▶   ∀𝑥(𝜑 ↔ 𝜓)   ) 3:1,2: ⊢ (   𝐴 ∈ 𝐵   ,   ∀𝑥(𝜑 ↔ 𝜓)    ▶   [𝐴 / 𝑥](𝜑 ↔ 𝜓)   ) 4:1,3: ⊢ (   𝐴 ∈ 𝐵   ,   ∀𝑥(𝜑 ↔ 𝜓)    ▶   ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)   ) 5:4: ⊢ (   𝐴 ∈ 𝐵   ▶   (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓))   ) qed:5: ⊢ (𝐴 ∈ 𝐵 → (∀𝑥(𝜑 ↔ 𝜓) → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → (∀𝑥(𝜑𝜓) → ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)))

TheoremtrsbcVD 38933* Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trsbc 38570 is trsbcVD 38933 without virtual deductions and was automatically derived from trsbcVD 38933.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)   ) 3:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝐴)   ) 4:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝐴)   ) 5:1,2,3,4: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))   ) 6:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 → ([𝐴 / 𝑥]𝑦 ∈ 𝑥 → [𝐴 / 𝑥]𝑧 ∈ 𝑥)))   ) 7:5,6: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ (𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)))   ) 8:: ⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝐴 → 𝑧 ∈ 𝐴)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) 9:7,8: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 10:: ⊢ ((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) 11:10: ⊢ ∀𝑥((𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) 12:1,11: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 → (𝑦 ∈ 𝑥 → 𝑧 ∈ 𝑥)) ↔ [𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   ) 13:9,12: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 14:13: ⊢ (   𝐴 ∈ 𝐵   ▶   ∀𝑦([𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 15:14: ⊢ (   𝐴 ∈ 𝐵   ▶   (∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 16:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦[𝐴 / 𝑥]((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   ) 17:15,16: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 18:17: ⊢ (   𝐴 ∈ 𝐵   ▶   ∀𝑧([𝐴 / 𝑥]∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 19:18: ⊢ (   𝐴 ∈ 𝐵   ▶   (∀𝑧[𝐴 / 𝑥]∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 20:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑧∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧[𝐴 / 𝑥]∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   ) 21:19,20: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑧∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴))   ) 22:: ⊢ (Tr 𝐴 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑧 ∈ 𝐴)) 23:21,22: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑧∀𝑦(( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥) ↔ Tr 𝐴)   ) 24:: ⊢ (Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) 25:24: ⊢ ∀𝑥(Tr 𝑥 ↔ ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥)) 26:1,25: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 ↔ [𝐴 / 𝑥]∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝑥) → 𝑧 ∈ 𝑥))   ) 27:23,26: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴)   ) qed:27: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]Tr 𝑥 ↔ Tr 𝐴))

TheoremtruniALTVD 38934* The union of a class of transitive sets is transitive. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. truniALT 38571 is truniALTVD 38934 without virtual deductions and was automatically derived from truniALTVD 38934.
 1:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ∀𝑥 ∈ 𝐴 Tr 𝑥   ) 2:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ) 3:2: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   𝑧 ∈ 𝑦   ) 4:2: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   𝑦 ∈ ∪ 𝐴   ) 5:4: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   ∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ) 6:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ) 7:6: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   𝑦 ∈ 𝑞   ) 8:6: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   𝑞 ∈ 𝐴   ) 9:1,8: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   [𝑞 / 𝑥]Tr 𝑥   ) 10:8,9: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   Tr 𝑞   ) 11:3,7,10: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   𝑧 ∈ 𝑞   ) 12:11,8: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴), (𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴)   ▶   𝑧 ∈ ∪ 𝐴   ) 13:12: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   ((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 14:13: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   ∀𝑞((𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 15:14: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   (∃𝑞(𝑦 ∈ 𝑞 ∧ 𝑞 ∈ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 16:5,15: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴)   ▶   𝑧 ∈ ∪ 𝐴   ) 17:16: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 18:17: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥    ▶   ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∪ 𝐴) → 𝑧 ∈ ∪ 𝐴)   ) 19:18: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   Tr ∪ 𝐴   ) qed:19: ⊢ (∀𝑥 ∈ 𝐴Tr 𝑥 → Tr ∪ 𝐴)
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)

Theoremee33VD 38935 Non-virtual deduction form of e33 38781. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. ee33 38547 is ee33VD 38935 without virtual deductions and was automatically derived from ee33VD 38935.
 h1:: ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) h2:: ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜏))) h3:: ⊢ (𝜃 → (𝜏 → 𝜂)) 4:1,3: ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 → 𝜂)))) 5:4: ⊢ (𝜏 → (𝜑 → (𝜓 → (𝜒 → 𝜂)))) 6:2,5: ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂)))))) 7:6: ⊢ (𝜓 → (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂))))) 8:7: ⊢ (𝜒 → (𝜑 → (𝜓 → (𝜒 → 𝜂)))) qed:8: ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜂)))
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒𝜃)))    &   (𝜑 → (𝜓 → (𝜒𝜏)))    &   (𝜃 → (𝜏𝜂))       (𝜑 → (𝜓 → (𝜒𝜂)))

TheoremtrintALTVD 38936* The intersection of a class of transitive sets is transitive. Virtual deduction proof of trintALT 38937. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trintALT 38937 is trintALTVD 38936 without virtual deductions and was automatically derived from trintALTVD 38936.
 1:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ∀𝑥 ∈ 𝐴Tr 𝑥   ) 2:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ) 3:2: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   𝑧 ∈ 𝑦   ) 4:2: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   𝑦 ∈ ∩ 𝐴   ) 5:4: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   ∀𝑞 ∈ 𝐴𝑦 ∈ 𝑞   ) 6:5: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   (𝑞 ∈ 𝐴 → 𝑦 ∈ 𝑞)   ) 7:: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   𝑞 ∈ 𝐴   ) 8:7,6: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   𝑦 ∈ 𝑞   ) 9:7,1: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   [𝑞 / 𝑥]Tr 𝑥   ) 10:7,9: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   Tr 𝑞   ) 11:10,3,8: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴), 𝑞 ∈ 𝐴   ▶   𝑧 ∈ 𝑞   ) 12:11: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   (𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞)   ) 13:12: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   ∀𝑞(𝑞 ∈ 𝐴 → 𝑧 ∈ 𝑞)   ) 14:13: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   ∀𝑞 ∈ 𝐴𝑧 ∈ 𝑞   ) 15:3,14: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ,   (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴)   ▶   𝑧 ∈ ∩ 𝐴   ) 16:15: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴)   ) 17:16: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   ∀𝑧∀𝑦((𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ∩ 𝐴) → 𝑧 ∈ ∩ 𝐴)   ) 18:17: ⊢ (   ∀𝑥 ∈ 𝐴Tr 𝑥   ▶   Tr ∩ 𝐴   ) qed:18: ⊢ (∀𝑥 ∈ 𝐴Tr 𝑥 → Tr ∩ 𝐴)
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)

TheoremtrintALT 38937* The intersection of a class of transitive sets is transitive. Exercise 5(b) of [Enderton] p. 73. trintALT 38937 is an alternate proof of trint 4759. trintALT 38937 is trintALTVD 38936 without virtual deductions and was automatically derived from trintALTVD 38936 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝐴 Tr 𝑥 → Tr 𝐴)

Theoremundif3VD 38938 The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual deduction proof of undif3 3880. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 3880 is undif3VD 38938 without virtual deductions and was automatically derived from undif3VD 38938.
 1:: ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐶))) 2:: ⊢ (𝑥 ∈ (𝐵 ∖ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) 3:2: ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 4:1,3: ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 5:: ⊢ (   𝑥 ∈ 𝐴   ▶   𝑥 ∈ 𝐴   ) 6:5: ⊢ (   𝑥 ∈ 𝐴   ▶   (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)   ) 7:5: ⊢ (   𝑥 ∈ 𝐴   ▶   (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)   ) 8:6,7: ⊢ (   𝑥 ∈ 𝐴   ▶   ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))   ) 9:8: ⊢ (𝑥 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ ( ¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 10:: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ) 11:10: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   𝑥 ∈ 𝐵   ) 12:10: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   ¬ 𝑥 ∈ 𝐶    ) 13:11: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)   ) 14:12: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)   ) 15:13,14: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))   ) 16:15: ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 17:9,16: ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 18:: ⊢ (   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ) 19:18: ⊢ (   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   𝑥 ∈ 𝐴   ) 20:18: ⊢ (   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   ¬ 𝑥 ∈ 𝐶    ) 21:18: ⊢ (   (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))   ) 22:21: ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 23:: ⊢ (   (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)   ▶   (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)   ) 24:23: ⊢ (   (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)   ▶   𝑥 ∈ 𝐴   ) 25:24: ⊢ (   (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)   ▶   (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))   ) 26:25: ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 27:10: ⊢ (   (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)   ▶   (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))   ) 28:27: ⊢ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 29:: ⊢ (   (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)   ▶   (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)   ) 30:29: ⊢ (   (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)   ▶   𝑥 ∈ 𝐴   ) 31:30: ⊢ (   (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)   ▶   (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))   ) 32:31: ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∨ ( 𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 33:22,26: ⊢ (((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 34:28,32: ⊢ (((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 35:33,34: ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 36:: ⊢ ((((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴)) ∨ ((𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶) ∨ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴))) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 37:36,35: ⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) → (𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶))) 38:17,37: ⊢ ((𝑥 ∈ 𝐴 ∨ (𝑥 ∈ 𝐵 ∧ ¬ 𝑥 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 39:: ⊢ (𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) 40:39: ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ ¬ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴)) 41:: ⊢ (¬ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴) ↔ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) 42:40,41: ⊢ (¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ↔ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴)) 43:: ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵 )) 44:43,42: ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴) ) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∧ 𝑥 ∈ 𝐴))) 45:: ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ ( 𝑥 ∈ (𝐴 ∪ 𝐵) ∧ ¬ 𝑥 ∈ (𝐶 ∖ 𝐴))) 46:45,44: ⊢ (𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) ↔ ( (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 47:4,38: ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ (¬ 𝑥 ∈ 𝐶 ∨ 𝑥 ∈ 𝐴))) 48:46,47: ⊢ (𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴))) 49:48: ⊢ ∀𝑥(𝑥 ∈ (𝐴 ∪ (𝐵 ∖ 𝐶)) ↔ 𝑥 ∈ ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴))) qed:49: ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴))
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))

TheoremsbcssgVD 38939 Virtual deduction proof of sbcssg 4076. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. sbcssg 4076 is sbcssgVD 38939 without virtual deductions and was automatically derived from sbcssgVD 38939.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 3:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)   ) 4:2,3: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝑦 ∈ 𝐶 → [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷 ))   ) 5:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 → [𝐴 / 𝑥]𝑦 ∈ 𝐷))   ) 6:4,5: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 7:6: ⊢ (   𝐴 ∈ 𝐵   ▶   ∀𝑦([𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 8:7: ⊢ (   𝐴 ∈ 𝐵   ▶   (∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) )   ) 9:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦[𝐴 / 𝑥](𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷))   ) 10:8,9: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷) ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) )   ) 11:: ⊢ (𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) 110:11: ⊢ ∀𝑥(𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷)) 12:1,110: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ [𝐴 / 𝑥]∀𝑦(𝑦 ∈ 𝐶 → 𝑦 ∈ 𝐷))   ) 13:10,12: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ∀𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 14:: ⊢ (⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷 ↔ ∀ 𝑦(𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 → 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)) 15:13,14: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷)   ) qed:15: ⊢ (𝐴 ∈ 𝐵 → ([𝐴 / 𝑥]𝐶 ⊆ 𝐷 ↔ ⦋ 𝐴 / 𝑥⦌𝐶 ⊆ ⦋𝐴 / 𝑥⦌𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵 → ([𝐴 / 𝑥]𝐶𝐷𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

TheoremcsbingVD 38940 Virtual deduction proof of csbingOLD 38874. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbingOLD 38874 is csbingVD 38940 without virtual deductions and was automatically derived from csbingVD 38940.
 1:: ⊢ (   𝐴 ∈ 𝐵   ▶   𝐴 ∈ 𝐵   ) 2:: ⊢ (𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) } 20:2: ⊢ ∀𝑥(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} 30:1,20: ⊢ (   𝐴 ∈ 𝐵   ▶   [𝐴 / 𝑥](𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}   ) 3:1,30: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}   ) 4:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}   ) 5:3,4: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)}   ) 6:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 7:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)   ) 8:6,7: ⊢ (   𝐴 ∈ 𝐵   ▶   (([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷) )   ) 9:1: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐷))   ) 10:9,8: ⊢ (   𝐴 ∈ 𝐵   ▶   ([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 11:10: ⊢ (   𝐴 ∈ 𝐵   ▶   ∀𝑦([𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) ↔ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷))   ) 12:11: ⊢ (   𝐴 ∈ 𝐵   ▶   {𝑦 ∣ [𝐴 / 𝑥](𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)} = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)}   ) 13:5,12: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = {𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)}   ) 14:: ⊢ (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷) = { 𝑦 ∣ (𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐷)} 15:13,14: ⊢ (   𝐴 ∈ 𝐵   ▶   ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = (⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷)   ) qed:15: ⊢ (𝐴 ∈ 𝐵 → ⦋𝐴 / 𝑥⦌(𝐶 ∩ 𝐷) = ( ⦋𝐴 / 𝑥⦌𝐶 ∩ ⦋𝐴 / 𝑥⦌𝐷))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐵𝐴 / 𝑥(𝐶𝐷) = (𝐴 / 𝑥𝐶𝐴 / 𝑥𝐷))

TheoremonfrALTlem5VD 38941* Virtual deduction proof of onfrALTlem5 38577. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem5 38577 is onfrALTlem5VD 38941 without virtual deductions and was automatically derived from onfrALTlem5VD 38941.
 1:: ⊢ 𝑎 ∈ V 2:1: ⊢ (𝑎 ∩ 𝑥) ∈ V 3:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 ∩ 𝑥) = ∅) 4:3: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ ¬ (𝑎 ∩ 𝑥) = ∅) 5:: ⊢ ((𝑎 ∩ 𝑥) ≠ ∅ ↔ ¬ (𝑎 ∩ 𝑥 ) = ∅) 6:4,5: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ (𝑎 ∩ 𝑥) ≠ ∅) 7:2: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅) 8:: ⊢ (𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅) 9:8: ⊢ ∀𝑏(𝑏 ≠ ∅ ↔ ¬ 𝑏 = ∅) 10:2,9: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]¬ 𝑏 = ∅) 11:7,10: ⊢ (¬ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅) 12:6,11: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅ ↔ ( 𝑎 ∩ 𝑥) ≠ ∅) 13:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥 ) ↔ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥)) 14:12,13: ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅)) 15:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ [(𝑎 ∩ 𝑥) / 𝑏]𝑏 ≠ ∅)) 16:15,14: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) ↔ ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅)) 17:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ( ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦) 18:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 = (𝑎 ∩ 𝑥) 19:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦 = 𝑦 20:18,19: ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑏 ∩ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌𝑦) = ((𝑎 ∩ 𝑥) ∩ 𝑦) 21:17,20: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = (( 𝑎 ∩ 𝑥) ∩ 𝑦) 22:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅ ↔ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ⦋(𝑎 ∩ 𝑥) / 𝑏⦌ ∅) 23:2: ⊢ ⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ = ∅ 24:21,23: ⊢ (⦋(𝑎 ∩ 𝑥) / 𝑏⦌(𝑏 ∩ 𝑦) = ⦋(𝑎 ∩ 𝑥) / 𝑏⦌∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 25:22,24: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅ ↔ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 26:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ↔ 𝑦 ∈ (𝑎 ∩ 𝑥)) 27:25,26: ⊢ (([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [ (𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ (( 𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 28:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏]𝑦 ∈ 𝑏 ∧ [(𝑎 ∩ 𝑥) / 𝑏](𝑏 ∩ 𝑦) = ∅)) 29:27,28: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 30:29: ⊢ ∀𝑦([(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 31:30: ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 32:: ⊢ (∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅ )) 33:31,32: ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 34:2: ⊢ (∃𝑦[(𝑎 ∩ 𝑥) / 𝑏](𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ ( 𝑏 ∩ 𝑦) = ∅)) 35:33,34: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅) ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅) 36:: ⊢ (∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦 (𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅)) 37:36: ⊢ ∀𝑏(∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅)) 38:2,37: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦(𝑦 ∈ 𝑏 ∧ (𝑏 ∩ 𝑦) = ∅)) 39:35,38: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅ ↔ ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) 40:16,39: ⊢ (([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 41:2: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ ([(𝑎 ∩ 𝑥) / 𝑏](𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → [(𝑎 ∩ 𝑥) / 𝑏]∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅)) qed:40,41: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥 )((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([(𝑎𝑥) / 𝑏]((𝑏 ⊆ (𝑎𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦𝑏 (𝑏𝑦) = ∅) ↔ (((𝑎𝑥) ⊆ (𝑎𝑥) ∧ (𝑎𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅))

TheoremonfrALTlem4VD 38942* Virtual deduction proof of onfrALTlem4 38578. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem4 38578 is onfrALTlem4VD 38942 without virtual deductions and was automatically derived from onfrALTlem4VD 38942.
 1:: ⊢ 𝑦 ∈ V 2:1: ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ ⦋ 𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌∅) 3:1: ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (⦋𝑦 / 𝑥⦌ 𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) 4:1: ⊢ ⦋𝑦 / 𝑥⦌𝑎 = 𝑎 5:1: ⊢ ⦋𝑦 / 𝑥⦌𝑥 = 𝑦 6:4,5: ⊢ (⦋𝑦 / 𝑥⦌𝑎 ∩ ⦋𝑦 / 𝑥⦌𝑥) = ( 𝑎 ∩ 𝑦) 7:3,6: ⊢ ⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = (𝑎 ∩ 𝑦) 8:1: ⊢ ⦋𝑦 / 𝑥⦌∅ = ∅ 9:7,8: ⊢ (⦋𝑦 / 𝑥⦌(𝑎 ∩ 𝑥) = ⦋𝑦 / 𝑥⦌ ∅ ↔ (𝑎 ∩ 𝑦) = ∅) 10:2,9: ⊢ ([𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅ ↔ (𝑎 ∩ 𝑦) = ∅) 11:1: ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ↔ 𝑦 ∈ 𝑎) 12:11,10: ⊢ (([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥]( 𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) 13:1: ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ([𝑦 / 𝑥]𝑥 ∈ 𝑎 ∧ [𝑦 / 𝑥](𝑎 ∩ 𝑥) = ∅)) qed:13,12: ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))

TheoremonfrALTlem3VD 38943* Virtual deduction proof of onfrALTlem3 38579. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem3 38579 is onfrALTlem3VD 38943 without virtual deductions and was automatically derived from onfrALTlem3VD 38943.
 1:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ) 2:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ) 3:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   𝑥 ∈ 𝑎   ) 4:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ⊆ On   ) 5:3,4: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   𝑥 ∈ On   ) 6:5: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   Ord 𝑥   ) 7:6: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶    E We 𝑥   ) 8:: ⊢ (𝑎 ∩ 𝑥) ⊆ 𝑥 9:7,8: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶    E We (𝑎 ∩ 𝑥)   ) 10:9: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶    E Fr (𝑎 ∩ 𝑥)   ) 11:10: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∀𝑏((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅)   ) 12:: ⊢ 𝑥 ∈ V 13:12,8: ⊢ (𝑎 ∩ 𝑥) ∈ V 14:13,11: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   [(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅)   ) 15:: ⊢ ([(𝑎 ∩ 𝑥) / 𝑏]((𝑏 ⊆ (𝑎 ∩ 𝑥) ∧ 𝑏 ≠ ∅) → ∃𝑦 ∈ 𝑏(𝑏 ∩ 𝑦) = ∅) ↔ (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)( (𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)) 16:14,15: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ ( 𝑎 ∩ 𝑥) ≠ ∅) → ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)   ) 17:: ⊢ (𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) 18:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ¬ (𝑎 ∩ 𝑥) = ∅   ) 19:18: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (𝑎 ∩ 𝑥) ≠ ∅   ) 20:17,19: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ((𝑎 ∩ 𝑥) ⊆ (𝑎 ∩ 𝑥) ∧ (𝑎 ∩ 𝑥) ≠ ∅)   ) qed:16,20: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦 ∈ (𝑎𝑥)((𝑎𝑥) ∩ 𝑦) = ∅   )

Theoremsimplbi2comtVD 38944 Virtual deduction proof of simplbi2comt 655. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. simplbi2comt 655 is simplbi2comtVD 38944 without virtual deductions and was automatically derived from simplbi2comtVD 38944.
 1:: ⊢ (   (𝜑 ↔ (𝜓 ∧ 𝜒))   ▶   (𝜑 ↔ ( 𝜓 ∧ 𝜒))   ) 2:1: ⊢ (   (𝜑 ↔ (𝜓 ∧ 𝜒))   ▶   ((𝜓 ∧ 𝜒 ) → 𝜑)   ) 3:2: ⊢ (   (𝜑 ↔ (𝜓 ∧ 𝜒))   ▶   (𝜓 → (𝜒 → 𝜑))   ) 4:3: ⊢ (   (𝜑 ↔ (𝜓 ∧ 𝜒))   ▶   (𝜒 → (𝜓 → 𝜑))   ) qed:4: ⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑)))
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓𝜑)))

TheoremonfrALTlem2VD 38945* Virtual deduction proof of onfrALTlem2 38581. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem2 38581 is onfrALTlem2VD 38945 without virtual deductions and was automatically derived from onfrALTlem2VD 38945.
 1:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ) 2:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ (𝑎 ∩ 𝑦)   ) 3:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ 𝑎   ) 4:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ) 5:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ) 6:5: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   𝑥 ∈ 𝑎   ) 7:4: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ⊆ On   ) 8:6,7: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   𝑥 ∈ On   ) 9:8: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   Ord 𝑥   ) 10:9: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   Tr 𝑥   ) 11:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑦 ∈ (𝑎 ∩ 𝑥)   ) 12:11: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑦 ∈ 𝑥   ) 13:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ 𝑦   ) 14:10,12,13: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ 𝑥   ) 15:3,14: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ (𝑎 ∩ 𝑥)   ) 16:13,15: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) ∧ 𝑧 ∈ (𝑎 ∩ 𝑦))   ▶   𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦)   ) 17:16: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦))   ) 18:17: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   ∀𝑧(𝑧 ∈ (𝑎 ∩ 𝑦) → 𝑧 ∈ ((𝑎 ∩ 𝑥) ∩ 𝑦))   ) 19:18: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎 ∩ 𝑦) ⊆ ((𝑎 ∩ 𝑥) ∩ 𝑦)   ) 20:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)   ) 21:20: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅   ) 22:19,21: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑎 ∩ 𝑦) = ∅   ) 23:20: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦 ∈ (𝑎 ∩ 𝑥)   ) 24:23: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   𝑦 ∈ 𝑎   ) 25:22,24: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅), (𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅)   ▶   (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)   ) 26:25: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))   ) 27:26: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∀𝑦((𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥 ) ∩ 𝑦) = ∅) → (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))   ) 28:27: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   (∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥 ) ∩ 𝑦) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))   ) 29:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ (𝑎 ∩ 𝑥)((𝑎 ∩ 𝑥) ∩ 𝑦 ) = ∅   ) 30:29: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦(𝑦 ∈ (𝑎 ∩ 𝑥) ∧ ((𝑎 ∩ 𝑥) ∩ 𝑦) = ∅)   ) 31:28,30: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)   ) qed:31: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ ¬ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )

TheoremonfrALTlem1VD 38946* Virtual deduction proof of onfrALTlem1 38583. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALTlem1 38583 is onfrALTlem1VD 38946 without virtual deductions and was automatically derived from onfrALTlem1VD 38946.
 1:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ) 2:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ) 3:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)    ) 4:: ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅ ) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) 5:4: ⊢ ∀𝑦([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) 6:5: ⊢ (∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) 7:3,6: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)   ) 8:: ⊢ (∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅ ↔ ∃𝑦( 𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) qed:7,8: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   )
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥𝑎 ∧ (𝑎𝑥) = ∅)   ▶   𝑦𝑎 (𝑎𝑦) = ∅   )

TheoremonfrALTVD 38947 Virtual deduction proof of onfrALT 38584. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. onfrALT 38584 is onfrALTVD 38947 without virtual deductions and was automatically derived from onfrALTVD 38947.
 1:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ ¬ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   ) 2:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   (𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   ) 3:1: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥 ∈ 𝑎   ▶    (¬ (𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 4:2: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥 ∈ 𝑎   ▶    ((𝑎 ∩ 𝑥) = ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 5:: ⊢ ((𝑎 ∩ 𝑥) = ∅ ∨ ¬ (𝑎 ∩ 𝑥) = ∅) 6:5,4,3: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ,   𝑥 ∈ 𝑎   ▶    ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   ) 7:6: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 8:7: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   ∀𝑥(𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 9:8: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (∃𝑥𝑥 ∈ 𝑎 → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 10:: ⊢ (𝑎 ≠ ∅ ↔ ∃𝑥𝑥 ∈ 𝑎) 11:9,10: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ≠ ∅ → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅)   ) 12:: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ) 13:12: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   𝑎 ≠ ∅   ) 14:13,11: ⊢ (   (𝑎 ⊆ On ∧ 𝑎 ≠ ∅)   ▶   ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅   ) 15:14: ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅) 16:15: ⊢ ∀𝑎((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ∃𝑦 ∈ 𝑎(𝑎 ∩ 𝑦) = ∅) qed:16: ⊢ E Fr On
(Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
E Fr On

Theoremcsbeq2gVD 38948 Virtual deduction proof of csbeq2gOLD 38585. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbeq2gOLD 38585 is csbeq2gVD 38948 without virtual deductions and was automatically derived from csbeq2gVD 38948.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   (∀𝑥𝐵 = 𝐶 → [𝐴 / 𝑥] 𝐵 = 𝐶)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)   ) 4:2,3: ⊢ (   𝐴 ∈ 𝑉   ▶   (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥 ⦌𝐵 = ⦋𝐴 / 𝑥⦌𝐶)   ) qed:4: ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝐵 = 𝐶 → ⦋𝐴 / 𝑥⦌ 𝐵 = ⦋𝐴 / 𝑥⦌𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉 → (∀𝑥 𝐵 = 𝐶𝐴 / 𝑥𝐵 = 𝐴 / 𝑥𝐶))

TheoremcsbsngVD 38949 Virtual deduction proof of csbsng 4234. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbsng 4234 is csbsngVD 38949 without virtual deductions and was automatically derived from csbsngVD 38949.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴 / 𝑥⦌𝐵)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌𝑦 = 𝑦   ) 4:3: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝑦 = ⦋𝐴 / 𝑥⦌𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)   ) 5:2,4: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)   ) 6:5: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥]𝑦 = 𝐵 ↔ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵)   ) 7:6: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}   ) 8:1: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑦 ∣ [𝐴 / 𝑥]𝑦 = 𝐵} = ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵}   ) 9:7,8: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}   ) 10:: ⊢ {𝐵} = {𝑦 ∣ 𝑦 = 𝐵} 11:10: ⊢ ∀𝑥{𝐵} = {𝑦 ∣ 𝑦 = 𝐵} 12:1,11: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝐵} = ⦋ 𝐴 / 𝑥⦌{𝑦 ∣ 𝑦 = 𝐵}   ) 13:9,12: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝐵} = { 𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵}   ) 14:: ⊢ {⦋𝐴 / 𝑥⦌𝐵} = {𝑦 ∣ 𝑦 = ⦋𝐴 / 𝑥⦌𝐵} 15:13,14: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝐵} = { ⦋𝐴 / 𝑥⦌𝐵}   ) qed:15: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{𝐵} = {⦋ 𝐴 / 𝑥⦌𝐵})
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥{𝐵} = {𝐴 / 𝑥𝐵})

TheoremcsbxpgVD 38950 Virtual deduction proof of csbxpgOLD 38873. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbxpgOLD 38873 is csbxpgVD 38950 without virtual deductions and was automatically derived from csbxpgVD 38950.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌𝑤 = 𝑤   ) 4:3: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 5:2,4: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ↔ 𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 6:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ ⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 7:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌𝑦 = 𝑦   ) 8:7: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 9:6,8: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)   ) 10:5,9: ⊢ (   𝐴 ∈ 𝑉   ▶   (([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))   ) 11:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ ([𝐴 / 𝑥]𝑤 ∈ 𝐵 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐶))   ) 12:10,11: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ↔ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))   ) 13:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑧 = ⟨𝑤   ,    𝑦⟩ ↔ 𝑧 = ⟨𝑤, 𝑦⟩)   ) 14:12,13: ⊢ (   𝐴 ∈ 𝑉   ▶   (([𝐴 / 𝑥]𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 15:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ([𝐴 / 𝑥]𝑧 = ⟨𝑤, 𝑦⟩ ∧ [𝐴 / 𝑥](𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))   ) 16:14,15: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 = ⟨𝑤    ,   𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 17:16: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 18:17: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 19:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))   ) 20:18,19: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 21:20: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑤([𝐴 / 𝑥]∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 22:21: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑤[𝐴 / 𝑥]∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 23:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑤∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤[𝐴 / 𝑥]∃𝑦 (𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)))   ) 24:22,23: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑤∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 25:24: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑧([𝐴 / 𝑥]∃𝑤∃ 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)))   ) 26:25: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑧 ∣ [𝐴 / 𝑥]∃𝑤∃ 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}    ) 27:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃ 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ [𝐴 / 𝑥] ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}   ) 28:26,27: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃ 𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} = {𝑧 ∣ ∃𝑤∃𝑦( 𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}    ) 29:: ⊢ {⟨𝑤   ,   𝑦⟩ ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} 30:: ⊢ (𝐵 × 𝐶) = {⟨𝑤   ,   𝑦⟩ ∣ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)} 31:29,30: ⊢ (𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤 , 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} 32:31: ⊢ ∀𝑥(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))} 33:1,32: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))}   ) 34:28,33: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))}   ) 35:: ⊢ {⟨𝑤   ,   𝑦⟩ ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} 36:: ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = { ⟨𝑤, 𝑦⟩ ∣ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶)} 37:35,36: ⊢ (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶) = {𝑧 ∣ ∃𝑤∃𝑦(𝑧 = ⟨𝑤, 𝑦⟩ ∧ (𝑤 ∈ ⦋𝐴 / 𝑥⦌𝐵 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐶))} 38:34,37: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶)   ) qed:38: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 × 𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 × ⦋𝐴 / 𝑥⦌𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵 × 𝐶) = (𝐴 / 𝑥𝐵 × 𝐴 / 𝑥𝐶))

TheoremcsbresgVD 38951 Virtual deduction proof of csbresgOLD 38875. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbresgOLD 38875 is csbresgVD 38951 without virtual deductions and was automatically derived from csbresgVD 38951.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌V = V   ) 3:2: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V)   ) 4:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V)   ) 5:3,4: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V)   ) 6:5: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))   ) 7:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V))   ) 8:6,7: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))   ) 9:: ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) 10:9: ⊢ ∀𝑥(𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) 11:1,10: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V))   ) 12:8,11: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V))   ) 13:: ⊢ (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) 14:12,13: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶)   ) qed:14: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ( ⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶))

TheoremcsbrngVD 38952 Virtual deduction proof of csbrngOLD 38876. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbrngOLD 38876 is csbrngVD 38952 without virtual deductions and was automatically derived from csbrngVD 38952.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]⟨𝑤   ,   𝑦⟩ ∈ 𝐵 ↔ ⦋𝐴 / 𝑥⦌⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌⟨𝑤   ,   𝑦⟩ = ⟨𝑤, 𝑦⟩   ) 4:3: ⊢ (   𝐴 ∈ 𝑉   ▶   (⦋𝐴 / 𝑥⦌⟨𝑤   ,   𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 5:2,4: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]⟨𝑤   ,   𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 6:5: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑤([𝐴 / 𝑥]⟨𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 7:6: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑤[𝐴 / 𝑥]⟨𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 8:1: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑤[𝐴 / 𝑥]⟨𝑤   ,    𝑦⟩ ∈ 𝐵 ↔ [𝐴 / 𝑥]∃𝑤⟨𝑤, 𝑦⟩ ∈ 𝐵)   ) 9:7,8: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑤⟨𝑤    ,   𝑦⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 10:9: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥]∃𝑤 ⟨𝑤, 𝑦⟩ ∈ 𝐵 ↔ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 11:10: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨ 𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵}   ) 12:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤 ⟨𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ [𝐴 / 𝑥]∃𝑤⟨𝑤, 𝑦⟩ ∈ 𝐵}   ) 13:11,12: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤 ⟨𝑤, 𝑦⟩ ∈ 𝐵} = {𝑦 ∣ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵}   ) 14:: ⊢ ran 𝐵 = {𝑦 ∣ ∃𝑤⟨𝑤   ,   𝑦⟩ ∈ 𝐵} 15:14: ⊢ ∀𝑥ran 𝐵 = {𝑦 ∣ ∃𝑤⟨𝑤   ,   𝑦⟩ ∈ 𝐵} 16:1,15: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌ran 𝐵 = ⦋𝐴 / 𝑥⦌{𝑦 ∣ ∃𝑤⟨𝑤, 𝑦⟩ ∈ 𝐵}   ) 17:13,16: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌ran 𝐵 = {𝑦 ∣ ∃𝑤⟨𝑤, 𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵}   ) 18:: ⊢ ran ⦋𝐴 / 𝑥⦌𝐵 = {𝑦 ∣ ∃𝑤⟨𝑤    ,   𝑦⟩ ∈ ⦋𝐴 / 𝑥⦌𝐵} 19:17,18: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋ 𝐴 / 𝑥⦌𝐵   ) qed:19: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌ran 𝐵 = ran ⦋𝐴 / 𝑥⦌𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥ran 𝐵 = ran 𝐴 / 𝑥𝐵)

Theoremcsbima12gALTVD 38953 Virtual deduction proof of csbima12gALTOLD 38877. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbima12gALTOLD 38877 is csbima12gALTVD 38953 without virtual deductions and was automatically derived from csbima12gALTVD 38953.
 1:: ⊢ (   𝐴 ∈ 𝐶   ▶   𝐴 ∈ 𝐶   ) 2:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ( ⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) 3:2: ⊢ (   𝐴 ∈ 𝐶   ▶    ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) 4:1: ⊢ (   𝐴 ∈ 𝐶   ▶    ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran ⦋𝐴 / 𝑥⦌(𝐹 ↾ 𝐵)   ) 5:3,4: ⊢ (   𝐴 ∈ 𝐶   ▶    ⦋𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) 6:: ⊢ (𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) 7:6: ⊢ ∀𝑥(𝐹 “ 𝐵) = ran (𝐹 ↾ 𝐵) 8:1,7: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ⦋ 𝐴 / 𝑥⦌ran (𝐹 ↾ 𝐵)   ) 9:5,8: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵)   ) 10:: ⊢ (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵) = ran (⦋𝐴 / 𝑥⦌𝐹 ↾ ⦋𝐴 / 𝑥⦌𝐵) 11:9,10: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = ( ⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵)   ) qed:11: ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹 “ 𝐵) = (⦋ 𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

TheoremcsbunigVD 38954 Virtual deduction proof of csbunigOLD 38871. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbunigOLD 38871 is csbunigVD 38954 without virtual deductions and was automatically derived from csbunigVD 38954.
 1:: ⊢ (   𝐴 ∈ 𝑉   ▶   𝐴 ∈ 𝑉   ) 2:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦)   ) 3:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)   ) 4:2,3: ⊢ (   𝐴 ∈ 𝑉   ▶   (([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 5:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ([𝐴 / 𝑥]𝑧 ∈ 𝑦 ∧ [𝐴 / 𝑥]𝑦 ∈ 𝐵))   ) 6:4,5: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 7:6: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑦([𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ (𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 8:7: ⊢ (   𝐴 ∈ 𝑉   ▶   (∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 9:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦[𝐴 / 𝑥](𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵))   ) 10:8,9: ⊢ (   𝐴 ∈ 𝑉   ▶   ([𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 11:10: ⊢ (   𝐴 ∈ 𝑉   ▶   ∀𝑧([𝐴 / 𝑥]∃𝑦( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵) ↔ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵))   ) 12:11: ⊢ (   𝐴 ∈ 𝑉   ▶   {𝑧 ∣ [𝐴 / 𝑥]∃𝑦( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}   ) 13:1: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ [𝐴 / 𝑥]∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}    ) 14:12,13: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}   ) 15:: ⊢ ∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} 16:15: ⊢ ∀𝑥∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)} 17:1,16: ⊢ (   𝐴 ∈ 𝑉   ▶   [𝐴 / 𝑥]∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}   ) 18:1,17: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌∪ 𝐵 = ⦋𝐴 / 𝑥⦌{𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵)}   ) 19:14,18: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌∪ 𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)}   ) 20:: ⊢ ∪ ⦋𝐴 / 𝑥⦌𝐵 = {𝑧 ∣ ∃𝑦(𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋𝐴 / 𝑥⦌𝐵)} 21:19,20: ⊢ (   𝐴 ∈ 𝑉   ▶   ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵   ) qed:21: ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌∪ 𝐵 = ∪ ⦋𝐴 / 𝑥⦌𝐵)
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝑉𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥𝐵)

Theoremcsbfv12gALTVD 38955 Virtual deduction proof of csbfv12gALTOLD 38872. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbfv12gALTOLD 38872 is csbfv12gALTVD 38955 without virtual deductions and was automatically derived from csbfv12gALTVD 38955.
 1:: ⊢ (   𝐴 ∈ 𝐶   ▶   𝐴 ∈ 𝐶   ) 2:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌{𝑦} = { 𝑦}   ) 3:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵 }) = (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌{𝐵})   ) 4:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌{𝐵} = { ⦋𝐴 / 𝑥⦌𝐵}   ) 5:4: ⊢ (   𝐴 ∈ 𝐶   ▶   (⦋𝐴 / 𝑥⦌𝐹 “ ⦋𝐴 / 𝑥⦌{𝐵}) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵})   ) 6:3,5: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵 }) = (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵})   ) 7:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ ⦋𝐴 / 𝑥⦌(𝐹 “ {𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦})   ) 8:6,2: ⊢ (   𝐴 ∈ 𝐶   ▶   (⦋𝐴 / 𝑥⦌(𝐹 “ { 𝐵}) = ⦋𝐴 / 𝑥⦌{𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})   ) 9:7,8: ⊢ (   𝐴 ∈ 𝐶   ▶   ([𝐴 / 𝑥](𝐹 “ { 𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})    ) 10:9: ⊢ (   𝐴 ∈ 𝐶   ▶   ∀𝑦([𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦} ↔ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦})   ) 11:10: ⊢ (   𝐴 ∈ 𝐶   ▶   {𝑦 ∣ [𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}   ) 12:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ [𝐴 / 𝑥](𝐹 “ {𝐵}) = {𝑦}}   ) 13:11,12: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} = {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦 }}   ) 14:13: ⊢ (   𝐴 ∈ 𝐶   ▶   ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}   ) 15:1: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = ∪ ⦋𝐴 / 𝑥⦌{𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   ) 16:14,15: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ ( 𝐹 “ {𝐵}) = {𝑦}} = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}   ) 17:: ⊢ (𝐹‘𝐵) = ∪ {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}} 18:17: ⊢ ∀𝑥(𝐹‘𝐵) = ∪ {𝑦 ∣ (𝐹 “ {𝐵 }) = {𝑦}} 19:1,18: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ⦋𝐴 / 𝑥⦌∪ {𝑦 ∣ (𝐹 “ {𝐵}) = {𝑦}}   ) 20:16,19: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}}   ) 21:: ⊢ (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵) = ∪ {𝑦 ∣ (⦋𝐴 / 𝑥⦌𝐹 “ {⦋𝐴 / 𝑥⦌𝐵}) = {𝑦}} 22:20,21: ⊢ (   𝐴 ∈ 𝐶   ▶   ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵)   ) qed:22: ⊢ (𝐴 ∈ 𝐶 → ⦋𝐴 / 𝑥⦌(𝐹‘𝐵) = (⦋𝐴 / 𝑥⦌𝐹‘⦋𝐴 / 𝑥⦌𝐵))
(Contributed by Alan Sare, 10-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐶𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵))

Theoremcon5VD 38956 Virtual deduction proof of con5 38548. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. con5 38548 is con5VD 38956 without virtual deductions and was automatically derived from con5VD 38956.
 1:: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (𝜑 ↔ ¬ 𝜓)   ) 2:1: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (¬ 𝜓 → 𝜑)   ) 3:2: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (¬ 𝜑 → ¬ ¬ 𝜓 )   ) 4:: ⊢ (𝜓 ↔ ¬ ¬ 𝜓) 5:3,4: ⊢ (   (𝜑 ↔ ¬ 𝜓)   ▶   (¬ 𝜑 → 𝜓)   ) qed:5: ⊢ ((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑 → 𝜓))
(Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑 ↔ ¬ 𝜓) → (¬ 𝜑𝜓))

TheoremrelopabVD 38957 Virtual deduction proof of relopab 5236. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. relopab 5236 is relopabVD 38957 without virtual deductions and was automatically derived from relopabVD 38957.
 1:: ⊢ (   𝑦 = 𝑣   ▶   𝑦 = 𝑣   ) 2:1: ⊢ (   𝑦 = 𝑣   ▶   ⟨𝑥   ,   𝑦⟩ = ⟨𝑥   ,   𝑣 ⟩   ) 3:: ⊢ (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   ) 4:3: ⊢ (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   ⟨𝑥   ,   𝑣⟩ = ⟨ 𝑢, 𝑣⟩   ) 5:2,4: ⊢ (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   ⟨𝑥   ,   𝑦⟩ = ⟨ 𝑢, 𝑣⟩   ) 6:5: ⊢ (   𝑦 = 𝑣   ,   𝑥 = 𝑢   ▶   (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)   ) 7:6: ⊢ (   𝑦 = 𝑣   ▶   (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,    𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))   ) 8:7: ⊢ (𝑦 = 𝑣 → (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦 ⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))) 9:8: ⊢ (∃𝑣𝑦 = 𝑣 → ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥, 𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩))) 90:: ⊢ (𝑣 = 𝑦 ↔ 𝑦 = 𝑣) 91:90: ⊢ (∃𝑣𝑣 = 𝑦 ↔ ∃𝑣𝑦 = 𝑣) 92:: ⊢ ∃𝑣𝑣 = 𝑦 10:91,92: ⊢ ∃𝑣𝑦 = 𝑣 11:9,10: ⊢ ∃𝑣(𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)) 12:11: ⊢ (𝑥 = 𝑢 → ∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢, 𝑣⟩)) 13:: ⊢ (∃𝑣(𝑧 = ⟨𝑥   ,   𝑦⟩ → 𝑧 = ⟨𝑢 , 𝑣⟩) → (𝑧 = ⟨𝑥, 𝑦⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩)) 14:12,13: ⊢ (𝑥 = 𝑢 → (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣 𝑧 = ⟨𝑢, 𝑣⟩)) 15:14: ⊢ (∃𝑢𝑥 = 𝑢 → ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦 ⟩ → ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩)) 150:: ⊢ (𝑢 = 𝑥 ↔ 𝑥 = 𝑢) 151:150: ⊢ (∃𝑢𝑢 = 𝑥 ↔ ∃𝑢𝑥 = 𝑢) 152:: ⊢ ∃𝑢𝑢 = 𝑥 16:151,152: ⊢ ∃𝑢𝑥 = 𝑢 17:15,16: ⊢ ∃𝑢(𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩) 18:17: ⊢ (𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢∃𝑣𝑧 = ⟨ 𝑢, 𝑣⟩) 19:18: ⊢ (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑦∃𝑢 ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 20:: ⊢ (∃𝑦∃𝑢∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 21:19,20: ⊢ (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 22:21: ⊢ (∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑥 ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 23:: ⊢ (∃𝑥∃𝑢∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ → ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 24:22,23: ⊢ (∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ → ∃𝑢 ∃𝑣𝑧 = ⟨𝑢, 𝑣⟩) 25:24: ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} ⊆ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩} 26:: ⊢ 𝑥 ∈ V 27:: ⊢ 𝑦 ∈ V 28:26,27: ⊢ (𝑥 ∈ V ∧ 𝑦 ∈ V) 29:28: ⊢ (𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ (𝑧 = ⟨𝑥   ,   𝑦 ⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) 30:29: ⊢ (∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) 31:30: ⊢ (∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩ ↔ ∃𝑥 ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))) 32:31: ⊢ {𝑧 ∣ ∃𝑥∃𝑦𝑧 = ⟨𝑥   ,   𝑦⟩} = { 𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} 320:25,32: ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = ⟨𝑢, 𝑣⟩} 33:: ⊢ 𝑢 ∈ V 34:: ⊢ 𝑣 ∈ V 35:33,34: ⊢ (𝑢 ∈ V ∧ 𝑣 ∈ V) 36:35: ⊢ (𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ (𝑧 = ⟨𝑢   ,   𝑣 ⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))) 37:36: ⊢ (∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))) 38:37: ⊢ (∃𝑢∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩ ↔ ∃𝑢 ∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))) 39:38: ⊢ {𝑧 ∣ ∃𝑢∃𝑣𝑧 = ⟨𝑢   ,   𝑣⟩} = { 𝑧 ∣ ∃𝑢∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))} 40:320,39: ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥   ,   𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V))} ⊆ {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V))} 41:: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ V ∧ 𝑦 ∈ V)) } 42:: ⊢ {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = {𝑧 ∣ ∃𝑢∃𝑣(𝑧 = ⟨𝑢, 𝑣⟩ ∧ (𝑢 ∈ V ∧ 𝑣 ∈ V)) } 43:40,41,42: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ {⟨𝑢, 𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V)} 44:: ⊢ {⟨𝑢   ,   𝑣⟩ ∣ (𝑢 ∈ V ∧ 𝑣 ∈ V )} = (V × V) 45:43,44: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V )} ⊆ (V × V) 46:28: ⊢ (𝜑 → (𝑥 ∈ V ∧ 𝑦 ∈ V)) 47:46: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥   ,   𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ V)} 48:45,47: ⊢ {⟨𝑥   ,   𝑦⟩ ∣ 𝜑} ⊆ (V × V) qed:48: ⊢ Rel {⟨𝑥   ,   𝑦⟩ ∣ 𝜑}
(Contributed by Alan Sare, 9-Jul-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Rel {⟨𝑥, 𝑦⟩ ∣ 𝜑}

Theorem19.41rgVD 38958 Virtual deduction proof of 19.41rg 38586. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 19.41rg 38586 is 19.41rgVD 38958 without virtual deductions and was automatically derived from 19.41rgVD 38958. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (𝜓 → (𝜑 → (𝜑 ∧ 𝜓))) 2:1: ⊢ ((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → ( 𝜑 ∧ 𝜓)))) 3:2: ⊢ ∀𝑥((𝜓 → ∀𝑥𝜓) → (𝜓 → (𝜑 → (𝜑 ∧ 𝜓)))) 4:3: ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑 ∧ 𝜓)))) 5:: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   ∀𝑥(𝜓 → ∀𝑥𝜓)   ) 6:4,5: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → ∀𝑥(𝜑 → (𝜑 ∧ 𝜓)))   ) 7:: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ,   ∀𝑥𝜓   ▶    ∀𝑥𝜓   ) 8:6,7: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ,   ∀𝑥𝜓   ▶    ∀𝑥(𝜑 → (𝜑 ∧ 𝜓))   ) 9:8: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ,   ∀𝑥𝜓   ▶    (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓))   ) 10:9: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∀𝑥𝜓 → (∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)))   ) 11:5: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ∀ 𝑥𝜓)   ) 12:10,11: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (𝜓 → ( ∃𝑥𝜑 → ∃𝑥(𝜑 ∧ 𝜓)))   ) 13:12: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   (∃𝑥𝜑 → (𝜓 → ∃𝑥(𝜑 ∧ 𝜓)))   ) 14:13: ⊢ (   ∀𝑥(𝜓 → ∀𝑥𝜓)   ▶   ((∃𝑥 𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓))   ) qed:14: ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ 𝜓)))
(∀𝑥(𝜓 → ∀𝑥𝜓) → ((∃𝑥𝜑𝜓) → ∃𝑥(𝜑𝜓)))

Theorem2pm13.193VD 38959 Virtual deduction proof of 2pm13.193 38588. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. 2pm13.193 38588 is 2pm13.193VD 38959 without virtual deductions and was automatically derived from 2pm13.193VD 38959. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ) 2:1: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 3:2: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑥 = 𝑢   ) 4:1: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   ) 5:3,4: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)   ) 6:5: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)   ) 7:6: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   [𝑣 / 𝑦]𝜑   ) 8:2: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝑦 = 𝑣   ) 9:7,8: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ([𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣)   ) 10:9: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   (𝜑 ∧ 𝑦 = 𝑣)   ) 11:10: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   𝜑   ) 12:2,11: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][ 𝑣 / 𝑦]𝜑)   ▶   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ) 13:12: ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)) 14:: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ) 15:14: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 16:15: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑦 = 𝑣   ) 17:14: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   𝜑    ) 18:16,17: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   ( 𝜑 ∧ 𝑦 = 𝑣)   ) 19:18: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑 ∧ 𝑦 = 𝑣)   ) 20:15: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   𝑥 = 𝑢   ) 21:19: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑣 / 𝑦]𝜑   ) 22:20,21: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)   ) 23:22: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   ([ 𝑢 / 𝑥][𝑣 / 𝑦]𝜑 ∧ 𝑥 = 𝑢)   ) 24:23: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   [𝑢 / 𝑥][𝑣 / 𝑦]𝜑   ) 25:15,24: ⊢ (   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑)   ▶   (( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)   ) 26:25: ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑) → ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑)) qed:13,26: ⊢ (((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ∧ 𝜑))
(((𝑥 = 𝑢𝑦 = 𝑣) ∧ [𝑢 / 𝑥][𝑣 / 𝑦]𝜑) ↔ ((𝑥 = 𝑢𝑦 = 𝑣) ∧ 𝜑))

TheoremhbimpgVD 38960 Virtual deduction proof of hbimpg 38590. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 38590 is hbimpgVD 38960 without virtual deductions and was automatically derived from hbimpgVD 38960. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ) 2:1: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ∀𝑥(𝜑 → ∀𝑥𝜑)   ) 3:: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ¬ 𝜑   ) 4:2: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 5:4: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 6:3,5: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ∀𝑥¬ 𝜑   ) 7:: ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) 8:7: ⊢ (∀𝑥¬ 𝜑 → ∀𝑥(𝜑 → 𝜓)) 9:6,8: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ∀𝑥(𝜑 → 𝜓)   ) 10:9: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (¬ 𝜑 → ∀𝑥(𝜑 → 𝜓))   ) 11:: ⊢ (𝜓 → (𝜑 → 𝜓)) 12:11: ⊢ (∀𝑥𝜓 → ∀𝑥(𝜑 → 𝜓)) 13:1: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ∀𝑥(𝜓 → ∀𝑥𝜓)   ) 14:13: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥𝜓)   ) 15:14,12: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥(𝜑 → 𝜓))   ) 16:10,15: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((¬ 𝜑 ∨ 𝜓) → ∀𝑥(𝜑 → 𝜓))   ) 17:: ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) 18:16,17: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))   ) 19:: ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥∀𝑥( 𝜑 → ∀𝑥𝜑)) 20:: ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥∀𝑥( 𝜓 → ∀𝑥𝜓)) 21:19,20: ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))) 22:21,18: ⊢ (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))   ) qed:22: ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))
((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))

TheoremhbalgVD 38961 Virtual deduction proof of hbalg 38591. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbalg 38591 is hbalgVD 38961 without virtual deductions and was automatically derived from hbalgVD 38961. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   ∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦(𝜑 → ∀𝑥𝜑)   ) 2:1: ⊢ (   ∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑦∀𝑥𝜑)   ) 3:: ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) 4:2,3: ⊢ (   ∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)   ) 5:: ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦∀𝑦( 𝜑 → ∀𝑥𝜑)) 6:5,4: ⊢ (   ∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦(∀ 𝑦𝜑 → ∀𝑥∀𝑦𝜑)   ) qed:6: ⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦 𝜑 → ∀𝑥∀𝑦𝜑))
(∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦(∀𝑦𝜑 → ∀𝑥𝑦𝜑))

TheoremhbexgVD 38962 Virtual deduction proof of hbexg 38592. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbexg 38592 is hbexgVD 38962 without virtual deductions and was automatically derived from hbexgVD 38962. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 ∀𝑦(𝜑 → ∀𝑥𝜑)   ) 2:1: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 ∀𝑥(𝜑 → ∀𝑥𝜑)   ) 3:2: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 (𝜑 → ∀𝑥𝜑)   ) 4:3: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 (¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 5:: ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦 ∀𝑥(𝜑 → ∀𝑥𝜑)) 6:: ⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑦 ∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) 7:5: ⊢ (∀𝑦∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) ↔ ∀𝑦∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑)) 8:5,6,7: ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑦 ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) 9:8,4: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 ∀𝑥(¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 10:9: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 ∀𝑦(¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 11:10: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 (¬ 𝜑 → ∀𝑥¬ 𝜑)   ) 12:11: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 (∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑)   ) 13:12: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∀ 𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑)   ) 14:: ⊢ (∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥 ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)) 15:13,14: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 (∀𝑦¬ 𝜑 → ∀𝑥∀𝑦¬ 𝜑)   ) 16:15: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   ) 17:16: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (¬ ∀𝑦¬ 𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   ) 18:: ⊢ (∃𝑦𝜑 ↔ ¬ ∀𝑦¬ 𝜑) 19:17,18: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥¬ ∀𝑦¬ 𝜑)   ) 20:18: ⊢ (∀𝑥∃𝑦𝜑 ↔ ∀𝑥¬ ∀𝑦¬ 𝜑) 21:19,20: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   (∃ 𝑦𝜑 → ∀𝑥∃𝑦𝜑)   ) 22:8,21: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑦 (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)   ) 23:14,22: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 ∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)   ) qed:23: ⊢ (   ∀𝑥∀𝑦(𝜑 → ∀𝑥𝜑)   ▶   ∀𝑥 ∀𝑦(∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)   )
(∀𝑥𝑦(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑦(∃𝑦𝜑 → ∀𝑥𝑦𝜑))

Theoremax6e2eqVD 38963* The following User's Proof is a Virtual Deduction proof (see wvd1 38605) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 38593 is ax6e2eqVD 38963 without virtual deductions and was automatically derived from ax6e2eqVD 38963. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥𝑥 = 𝑦   ) 2:: ⊢ (   ∀𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑥 = 𝑢   ) 3:1: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   𝑥 = 𝑦   ) 4:2,3: ⊢ (   ∀𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   𝑦 = 𝑢   ) 5:2,4: ⊢ (   ∀𝑥𝑥 = 𝑦   ,   𝑥 = 𝑢   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 6:5: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))   ) 7:6: ⊢ (∀𝑥𝑥 = 𝑦 → (𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) 8:7: ⊢ (∀𝑥∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) 9:: ⊢ (∀𝑥𝑥 = 𝑦 ↔ ∀𝑥∀𝑥𝑥 = 𝑦) 10:8,9: ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))) 11:1,10: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥(𝑥 = 𝑢 → (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))   ) 12:11: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   (∃𝑥𝑥 = 𝑢 → ∃𝑥 (𝑥 = 𝑢 ∧ 𝑦 = 𝑢))   ) 13:: ⊢ ∃𝑥𝑥 = 𝑢 14:13,12: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢 )   ) 140:14: ⊢ (∀𝑥𝑥 = 𝑦 → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) ) 141:140: ⊢ (∀𝑥𝑥 = 𝑦 → ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)) 15:1,141: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 16:1,15: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∀𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 17:16: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 18:17: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 19:: ⊢ (   𝑢 = 𝑣   ▶   𝑢 = 𝑣   ) 20:: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ) 21:20: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   𝑦 = 𝑢    ) 22:19,21: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   𝑦 = 𝑣    ) 23:20: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   𝑥 = 𝑢    ) 24:22,23: ⊢ (   𝑢 = 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑢)   ▶   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 25:24: ⊢ (   𝑢 = 𝑣   ▶   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 26:25: ⊢ (   𝑢 = 𝑣   ▶   ∀𝑦((𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → (𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 27:26: ⊢ (   𝑢 = 𝑣   ▶   (∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 28:27: ⊢ (   𝑢 = 𝑣   ▶   ∀𝑥(∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 29:28: ⊢ (   𝑢 = 𝑣   ▶   (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 30:29: ⊢ (𝑢 = 𝑣 → (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑢 ) → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 31:18,30: ⊢ (   ∀𝑥𝑥 = 𝑦   ▶   (𝑢 = 𝑣 → ∃𝑥∃𝑦 (𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) qed:31: ⊢ (∀𝑥𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥∃𝑦( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣)))
(∀𝑥 𝑥 = 𝑦 → (𝑢 = 𝑣 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣)))

Theoremax6e2ndVD 38964* The following User's Proof is a Virtual Deduction proof (see wvd1 38605) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2nd 38594 is ax6e2ndVD 38964 without virtual deductions and was automatically derived from ax6e2ndVD 38964. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ ∃𝑦𝑦 = 𝑣 2:: ⊢ 𝑢 ∈ V 3:1,2: ⊢ (𝑢 ∈ V ∧ ∃𝑦𝑦 = 𝑣) 4:3: ⊢ ∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) 5:: ⊢ (𝑢 ∈ V ↔ ∃𝑥𝑥 = 𝑢) 6:5: ⊢ ((𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ (∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) 7:6: ⊢ (∃𝑦(𝑢 ∈ V ∧ 𝑦 = 𝑣) ↔ ∃𝑦 (∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) 8:4,7: ⊢ ∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) 9:: ⊢ (𝑧 = 𝑣 → ∀𝑥𝑧 = 𝑣) 10:: ⊢ (𝑦 = 𝑣 → ∀𝑧𝑦 = 𝑣) 11:: ⊢ (   𝑧 = 𝑦   ▶   𝑧 = 𝑦   ) 12:11: ⊢ (   𝑧 = 𝑦   ▶   (𝑧 = 𝑣 ↔ 𝑦 = 𝑣)   ) 120:11: ⊢ (𝑧 = 𝑦 → (𝑧 = 𝑣 ↔ 𝑦 = 𝑣)) 13:9,10,120: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)) 14:: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ¬ ∀𝑥𝑥 = 𝑦   ) 15:14,13: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (𝑦 = 𝑣 → ∀𝑥 𝑦 = 𝑣)   ) 16:15: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → (𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)) 17:16: ⊢ (∀𝑥¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)) 18:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 ) 19:17,18: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥(𝑦 = 𝑣 → ∀ 𝑥𝑦 = 𝑣)) 20:14,19: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∀𝑥(𝑦 = 𝑣 → ∀𝑥𝑦 = 𝑣)   ) 21:20: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 22:21: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 23:22: ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥 𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 24:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 ) 25:23,24: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))) 26:14,25: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∀𝑦((∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 27:26: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   (∃𝑦(∃𝑥𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))   ) 28:8,27: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 29:28: ⊢ (   ¬ ∀𝑥𝑥 = 𝑦   ▶   ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) qed:29: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣))
(¬ ∀𝑥 𝑥 = 𝑦 → ∃𝑥𝑦(𝑥 = 𝑢𝑦 = 𝑣))

Theoremax6e2ndeqVD 38965* The following User's Proof is a Virtual Deduction proof (see wvd1 38605) completed automatically by a Metamath tools program invoking mmj2 and the Metamath Proof Assistant. ax6e2eq 38593 is ax6e2ndeqVD 38965 without virtual deductions and was automatically derived from ax6e2ndeqVD 38965. (Contributed by Alan Sare, 25-Mar-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
 1:: ⊢ (   𝑢 ≠ 𝑣   ▶   𝑢 ≠ 𝑣   ) 2:: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   ( 𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ) 3:2: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   𝑥 = 𝑢   ) 4:1,3: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   𝑥 ≠ 𝑣   ) 5:2: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   𝑦 = 𝑣   ) 6:4,5: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶   𝑥 ≠ 𝑦   ) 7:: ⊢ (∀𝑥𝑥 = 𝑦 → 𝑥 = 𝑦) 8:7: ⊢ (¬ 𝑥 = 𝑦 → ¬ ∀𝑥𝑥 = 𝑦) 9:: ⊢ (¬ 𝑥 = 𝑦 ↔ 𝑥 ≠ 𝑦) 10:8,9: ⊢ (𝑥 ≠ 𝑦 → ¬ ∀𝑥𝑥 = 𝑦) 11:6,10: ⊢ (   𝑢 ≠ 𝑣   ,   (𝑥 = 𝑢 ∧ 𝑦 = 𝑣)   ▶    ¬ ∀𝑥𝑥 = 𝑦   ) 12:11: ⊢ (   𝑢 ≠ 𝑣   ▶   ((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   ) 13:12: ⊢ (   𝑢 ≠ 𝑣   ▶   ∀𝑥((𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   ) 14:13: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑥¬ ∀𝑥𝑥 = 𝑦)   ) 15:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑥¬ ∀𝑥𝑥 = 𝑦 ) 19:15: ⊢ (∃𝑥¬ ∀𝑥𝑥 = 𝑦 ↔ ¬ ∀𝑥𝑥 = 𝑦) 20:14,19: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   ) 21:20: ⊢ (   𝑢 ≠ 𝑣   ▶   ∀𝑦(∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ¬ ∀𝑥𝑥 = 𝑦)   ) 22:21: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   ) 23:: ⊢ (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) ↔ ∃ 𝑦∃𝑥(𝑥 = 𝑢 ∧ 𝑦 = 𝑣)) 24:22,23: ⊢ (   𝑢 ≠ 𝑣   ▶   (∃𝑥∃𝑦(𝑥 = 𝑢 ∧ 𝑦 = 𝑣) → ∃𝑦¬ ∀𝑥𝑥 = 𝑦)   ) 25:: ⊢ (¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥𝑥 = 𝑦 ) 26:25: ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∃𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦) 260:: ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦) 27:260: ⊢ (∃𝑦∀𝑦¬ ∀𝑥𝑥 = 𝑦 ↔ ∀𝑦¬ ∀𝑥𝑥 = 𝑦) 270:26,27: ⊢ (∃𝑦¬ ∀𝑥𝑥 = 𝑦 → ∀𝑦¬ ∀𝑥 𝑥 = 𝑦) 28:: ⊢ (∀𝑦¬ ∀𝑥𝑥 = 𝑦