MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iccss Structured version   Visualization version   GIF version

Theorem iccss 12805
Description: Condition for a closed interval to be a subset of another closed interval. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 20-Feb-2015.)
Assertion
Ref Expression
iccss (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))

Proof of Theorem iccss
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexr 10687 . . 3 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
2 rexr 10687 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
31, 2anim12i 614 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ∈ ℝ*𝐵 ∈ ℝ*))
4 df-icc 12746 . . 3 [,] = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑧𝑧𝑦)})
5 xrletr 12552 . . 3 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝐴𝐶𝐶𝑤) → 𝐴𝑤))
6 xrletr 12552 . . 3 ((𝑤 ∈ ℝ*𝐷 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝑤𝐷𝐷𝐵) → 𝑤𝐵))
74, 4, 5, 6ixxss12 12759 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
83, 7sylan 582 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐴𝐶𝐷𝐵)) → (𝐶[,]𝐷) ⊆ (𝐴[,]𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2114  wss 3936   class class class wbr 5066  (class class class)co 7156  cr 10536  *cxr 10674  cle 10676  [,]cicc 12742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-pre-lttri 10611  ax-pre-lttrn 10612
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-1st 7689  df-2nd 7690  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-icc 12746
This theorem is referenced by:  xrhmeo  23550  lebnumii  23570  pcoval1  23617  pcoval2  23620  ivthicc  24059  dyaddisjlem  24196  volsup2  24206  volcn  24207  mbfi1fseqlem5  24320  dvcvx  24617  dvfsumle  24618  dvfsumabs  24620  harmonicbnd3  25585  ppisval  25681  chtwordi  25733  ppiwordi  25739  chpub  25796  cvmliftlem2  32533  fourierdlem76  42487  fourierdlem103  42514  fourierdlem104  42515  fourierdlem107  42518  fourierdlem112  42523  salexct3  42645  salgensscntex  42647
  Copyright terms: Public domain W3C validator