Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  harmonicbnd3 Structured version   Visualization version   GIF version

Theorem harmonicbnd3 24933
 Description: A bound on the harmonic series, as compared to the natural logarithm. (Contributed by Mario Carneiro, 13-Apr-2016.)
Assertion
Ref Expression
harmonicbnd3 (𝑁 ∈ ℕ0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ))
Distinct variable group:   𝑚,𝑁

Proof of Theorem harmonicbnd3
StepHypRef Expression
1 elnn0 11486 . 2 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 0re 10232 . . . . 5 0 ∈ ℝ
3 emre 24931 . . . . 5 γ ∈ ℝ
4 2re 11282 . . . . . . . . 9 2 ∈ ℝ
5 ere 15018 . . . . . . . . 9 e ∈ ℝ
6 egt2lt3 15133 . . . . . . . . . 10 (2 < e ∧ e < 3)
76simpli 476 . . . . . . . . 9 2 < e
84, 5, 7ltleii 10352 . . . . . . . 8 2 ≤ e
9 2rp 12030 . . . . . . . . 9 2 ∈ ℝ+
10 epr 15135 . . . . . . . . 9 e ∈ ℝ+
11 logleb 24548 . . . . . . . . 9 ((2 ∈ ℝ+ ∧ e ∈ ℝ+) → (2 ≤ e ↔ (log‘2) ≤ (log‘e)))
129, 10, 11mp2an 710 . . . . . . . 8 (2 ≤ e ↔ (log‘2) ≤ (log‘e))
138, 12mpbi 220 . . . . . . 7 (log‘2) ≤ (log‘e)
14 loge 24532 . . . . . . 7 (log‘e) = 1
1513, 14breqtri 4829 . . . . . 6 (log‘2) ≤ 1
16 1re 10231 . . . . . . 7 1 ∈ ℝ
17 relogcl 24521 . . . . . . . 8 (2 ∈ ℝ+ → (log‘2) ∈ ℝ)
189, 17ax-mp 5 . . . . . . 7 (log‘2) ∈ ℝ
1916, 18subge0i 10773 . . . . . 6 (0 ≤ (1 − (log‘2)) ↔ (log‘2) ≤ 1)
2015, 19mpbir 221 . . . . 5 0 ≤ (1 − (log‘2))
213leidi 10754 . . . . 5 γ ≤ γ
22 iccss 12434 . . . . 5 (((0 ∈ ℝ ∧ γ ∈ ℝ) ∧ (0 ≤ (1 − (log‘2)) ∧ γ ≤ γ)) → ((1 − (log‘2))[,]γ) ⊆ (0[,]γ))
232, 3, 20, 21, 22mp4an 711 . . . 4 ((1 − (log‘2))[,]γ) ⊆ (0[,]γ)
24 harmonicbnd2 24930 . . . 4 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ ((1 − (log‘2))[,]γ))
2523, 24sseldi 3742 . . 3 (𝑁 ∈ ℕ → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ))
26 oveq2 6821 . . . . . . . . 9 (𝑁 = 0 → (1...𝑁) = (1...0))
27 fz10 12555 . . . . . . . . 9 (1...0) = ∅
2826, 27syl6eq 2810 . . . . . . . 8 (𝑁 = 0 → (1...𝑁) = ∅)
2928sumeq1d 14630 . . . . . . 7 (𝑁 = 0 → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) = Σ𝑚 ∈ ∅ (1 / 𝑚))
30 sum0 14651 . . . . . . 7 Σ𝑚 ∈ ∅ (1 / 𝑚) = 0
3129, 30syl6eq 2810 . . . . . 6 (𝑁 = 0 → Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) = 0)
32 oveq1 6820 . . . . . . . . 9 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
33 0p1e1 11324 . . . . . . . . 9 (0 + 1) = 1
3432, 33syl6eq 2810 . . . . . . . 8 (𝑁 = 0 → (𝑁 + 1) = 1)
3534fveq2d 6356 . . . . . . 7 (𝑁 = 0 → (log‘(𝑁 + 1)) = (log‘1))
36 log1 24531 . . . . . . 7 (log‘1) = 0
3735, 36syl6eq 2810 . . . . . 6 (𝑁 = 0 → (log‘(𝑁 + 1)) = 0)
3831, 37oveq12d 6831 . . . . 5 (𝑁 = 0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) = (0 − 0))
39 0m0e0 11322 . . . . 5 (0 − 0) = 0
4038, 39syl6eq 2810 . . . 4 (𝑁 = 0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) = 0)
412leidi 10754 . . . . 5 0 ≤ 0
42 emgt0 24932 . . . . . 6 0 < γ
432, 3, 42ltleii 10352 . . . . 5 0 ≤ γ
442, 3elicc2i 12432 . . . . 5 (0 ∈ (0[,]γ) ↔ (0 ∈ ℝ ∧ 0 ≤ 0 ∧ 0 ≤ γ))
452, 41, 43, 44mpbir3an 1427 . . . 4 0 ∈ (0[,]γ)
4640, 45syl6eqel 2847 . . 3 (𝑁 = 0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ))
4725, 46jaoi 393 . 2 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ))
481, 47sylbi 207 1 (𝑁 ∈ ℕ0 → (Σ𝑚 ∈ (1...𝑁)(1 / 𝑚) − (log‘(𝑁 + 1))) ∈ (0[,]γ))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   = wceq 1632   ∈ wcel 2139   ⊆ wss 3715  ∅c0 4058   class class class wbr 4804  ‘cfv 6049  (class class class)co 6813  ℝcr 10127  0cc0 10128  1c1 10129   + caddc 10131   < clt 10266   ≤ cle 10267   − cmin 10458   / cdiv 10876  ℕcn 11212  2c2 11262  3c3 11263  ℕ0cn0 11484  ℝ+crp 12025  [,]cicc 12371  ...cfz 12519  Σcsu 14615  eceu 14992  logclog 24500  γcem 24917 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-e 14998  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502  df-em 24918 This theorem is referenced by:  harmoniclbnd  24934  harmonicbnd4  24936  logdivbnd  25444
 Copyright terms: Public domain W3C validator