Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccvonmbllem Structured version   Visualization version   GIF version

Theorem iccvonmbllem 42980
Description: Any n-dimensional closed interval is Lebesgue measurable. This is the second statement in Proposition 115G (c) of [Fremlin1] p. 32. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
Hypotheses
Ref Expression
iccvonmbllem.x (𝜑𝑋 ∈ Fin)
iccvonmbllem.s 𝑆 = dom (voln‘𝑋)
iccvonmbllem.a (𝜑𝐴:𝑋⟶ℝ)
iccvonmbllem.b (𝜑𝐵:𝑋⟶ℝ)
iccvonmbllem.c 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
iccvonmbllem.d 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
Assertion
Ref Expression
iccvonmbllem (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝐶,𝑖   𝐷,𝑖   𝑆,𝑛   𝑖,𝑋,𝑛   𝜑,𝑖,𝑛
Allowed substitution hints:   𝐴(𝑖)   𝐵(𝑖)   𝐶(𝑛)   𝐷(𝑛)   𝑆(𝑖)

Proof of Theorem iccvonmbllem
StepHypRef Expression
1 iccvonmbllem.c . . . . . . . . . . . 12 𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
21a1i 11 . . . . . . . . . . 11 (𝜑𝐶 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛)))))
3 iccvonmbllem.x . . . . . . . . . . . . 13 (𝜑𝑋 ∈ Fin)
43adantr 483 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ ℕ) → 𝑋 ∈ Fin)
54mptexd 6987 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))) ∈ V)
62, 5fvmpt2d 6781 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛) = (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))))
7 iccvonmbllem.a . . . . . . . . . . . . 13 (𝜑𝐴:𝑋⟶ℝ)
87ffvelrnda 6851 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
98adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐴𝑖) ∈ ℝ)
10 nnrecre 11680 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → (1 / 𝑛) ∈ ℝ)
1110ad2antlr 725 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (1 / 𝑛) ∈ ℝ)
129, 11resubcld 11068 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐴𝑖) − (1 / 𝑛)) ∈ ℝ)
136, 12fvmpt2d 6781 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
1413an32s 650 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐶𝑛)‘𝑖) = ((𝐴𝑖) − (1 / 𝑛)))
15 iccvonmbllem.d . . . . . . . . . . . 12 𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
1615a1i 11 . . . . . . . . . . 11 (𝜑𝐷 = (𝑛 ∈ ℕ ↦ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛)))))
174mptexd 6987 . . . . . . . . . . 11 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))) ∈ V)
1816, 17fvmpt2d 6781 . . . . . . . . . 10 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛) = (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))))
19 iccvonmbllem.b . . . . . . . . . . . . 13 (𝜑𝐵:𝑋⟶ℝ)
2019ffvelrnda 6851 . . . . . . . . . . . 12 ((𝜑𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2120adantlr 713 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → (𝐵𝑖) ∈ ℝ)
2221, 11readdcld 10670 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐵𝑖) + (1 / 𝑛)) ∈ ℝ)
2318, 22fvmpt2d 6781 . . . . . . . . 9 (((𝜑𝑛 ∈ ℕ) ∧ 𝑖𝑋) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2423an32s 650 . . . . . . . 8 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → ((𝐷𝑛)‘𝑖) = ((𝐵𝑖) + (1 / 𝑛)))
2514, 24oveq12d 7174 . . . . . . 7 (((𝜑𝑖𝑋) ∧ 𝑛 ∈ ℕ) → (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
2625iineq2dv 4944 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))))
278, 20iooiinicc 41838 . . . . . 6 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐴𝑖) − (1 / 𝑛))(,)((𝐵𝑖) + (1 / 𝑛))) = ((𝐴𝑖)[,](𝐵𝑖)))
2826, 27eqtrd 2856 . . . . 5 ((𝜑𝑖𝑋) → 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = ((𝐴𝑖)[,](𝐵𝑖)))
2928ixpeq2dva 8476 . . . 4 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
3029eqcomd 2827 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
31 eqidd 2822 . . 3 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)))
32 nnn0 41667 . . . . 5 ℕ ≠ ∅
3332a1i 11 . . . 4 (𝜑 → ℕ ≠ ∅)
34 ixpiin 8488 . . . 4 (ℕ ≠ ∅ → X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3533, 34syl 17 . . 3 (𝜑X𝑖𝑋 𝑛 ∈ ℕ (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
3630, 31, 353eqtr3d 2864 . 2 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) = 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)))
37 iccvonmbllem.s . . . 4 𝑆 = dom (voln‘𝑋)
383, 37dmovnsal 42914 . . 3 (𝜑𝑆 ∈ SAlg)
39 nnct 13350 . . . 4 ℕ ≼ ω
4039a1i 11 . . 3 (𝜑 → ℕ ≼ ω)
4112fmpttd 6879 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ)
42 ressxr 10685 . . . . . . 7 ℝ ⊆ ℝ*
4342a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → ℝ ⊆ ℝ*)
4441, 43fssd 6528 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*)
456feq1d 6499 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐶𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐴𝑖) − (1 / 𝑛))):𝑋⟶ℝ*))
4644, 45mpbird 259 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐶𝑛):𝑋⟶ℝ*)
4722fmpttd 6879 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ)
4847, 43fssd 6528 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*)
4918feq1d 6499 . . . . 5 ((𝜑𝑛 ∈ ℕ) → ((𝐷𝑛):𝑋⟶ℝ* ↔ (𝑖𝑋 ↦ ((𝐵𝑖) + (1 / 𝑛))):𝑋⟶ℝ*))
5048, 49mpbird 259 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐷𝑛):𝑋⟶ℝ*)
514, 37, 46, 50ioovonmbl 42979 . . 3 ((𝜑𝑛 ∈ ℕ) → X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5238, 40, 33, 51saliincl 42630 . 2 (𝜑 𝑛 ∈ ℕ X𝑖𝑋 (((𝐶𝑛)‘𝑖)(,)((𝐷𝑛)‘𝑖)) ∈ 𝑆)
5336, 52eqeltrd 2913 1 (𝜑X𝑖𝑋 ((𝐴𝑖)[,](𝐵𝑖)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  wss 3936  c0 4291   ciin 4920   class class class wbr 5066  cmpt 5146  dom cdm 5555  wf 6351  cfv 6355  (class class class)co 7156  ωcom 7580  Xcixp 8461  cdom 8507  Fincfn 8509  cr 10536  1c1 10538   + caddc 10540  *cxr 10674  cmin 10870   / cdiv 11297  cn 11638  (,)cioo 12739  [,]cicc 12742  volncvoln 42840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cc 9857  ax-ac2 9885  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-disj 5032  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-omul 8107  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-fi 8875  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-acn 9371  df-ac 9542  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-z 11983  df-dec 12100  df-uz 12245  df-q 12350  df-rp 12391  df-xneg 12508  df-xadd 12509  df-xmul 12510  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-rlim 14846  df-sum 15043  df-prod 15260  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-rest 16696  df-topn 16697  df-0g 16715  df-gsum 16716  df-topgen 16717  df-prds 16721  df-pws 16723  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-grp 18106  df-minusg 18107  df-sbg 18108  df-subg 18276  df-ghm 18356  df-cntz 18447  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-field 19505  df-subrg 19533  df-abv 19588  df-staf 19616  df-srng 19617  df-lmod 19636  df-lss 19704  df-lmhm 19794  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-cnfld 20546  df-refld 20749  df-phl 20770  df-dsmm 20876  df-frlm 20891  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-cmp 21995  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-tng 23194  df-nrg 23195  df-nlm 23196  df-clm 23667  df-cph 23772  df-tcph 23773  df-rrx 23988  df-ovol 24065  df-vol 24066  df-salg 42614  df-sumge0 42665  df-mea 42752  df-ome 42792  df-caragen 42794  df-ovoln 42839  df-voln 42841
This theorem is referenced by:  iccvonmbl  42981
  Copyright terms: Public domain W3C validator