Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  irrapxlem2 Structured version   Visualization version   GIF version

Theorem irrapxlem2 36199
Description: Lemma for irrapx1 36204. Two multiples in the same bucket means they are very close mod 1. (Contributed by Stefan O'Rear, 12-Sep-2014.)
Assertion
Ref Expression
irrapxlem2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦

Proof of Theorem irrapxlem2
StepHypRef Expression
1 irrapxlem1 36198 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))))
2 nnre 10877 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
32ad3antlr 763 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℝ)
4 rpre 11674 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
54ad3antrrr 762 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐴 ∈ ℝ)
6 elfzelz 12171 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℤ)
76zred 11317 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (0...𝐵) → 𝑥 ∈ ℝ)
87ad2antlr 759 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑥 ∈ ℝ)
95, 8remulcld 9927 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑥) ∈ ℝ)
10 1rp 11671 . . . . . . . . . . . . . . 15 1 ∈ ℝ+
1110a1i 11 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ+)
129, 11modcld 12494 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℝ)
133, 12remulcld 9927 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ)
14 intfrac 12505 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
1513, 14syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑥) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
16 elfzelz 12171 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℤ)
1716zred 11317 . . . . . . . . . . . . . . . 16 (𝑦 ∈ (0...𝐵) → 𝑦 ∈ ℝ)
1817adantl 481 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝑦 ∈ ℝ)
195, 18remulcld 9927 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐴 · 𝑦) ∈ ℝ)
2019, 11modcld 12494 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℝ)
213, 20remulcld 9927 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
22 intfrac 12505 . . . . . . . . . . . 12 ((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2321, 22syl 17 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · ((𝐴 · 𝑦) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
2415, 23oveq12d 6545 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
2524fveq2d 6092 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
2625adantr 480 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
27 simpr 476 . . . . . . . . . . . 12 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))))
2827oveq1d 6542 . . . . . . . . . . 11 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) = ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)))
2928oveq1d 6542 . . . . . . . . . 10 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
3029fveq2d 6092 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))))
3121flcld 12419 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℤ)
3231zcnd 11318 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) ∈ ℂ)
3313, 11modcld 12494 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℝ)
3433recnd 9925 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ ℂ)
3521, 11modcld 12494 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℝ)
3635recnd 9925 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ ℂ)
3732, 34, 36pnpcand 10281 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) = (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))
3837fveq2d 6092 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) = (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))))
39 0red 9898 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ∈ ℝ)
40 1red 9912 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 1 ∈ ℝ)
41 modelico 12500 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑥) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
4213, 10, 41sylancl 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1))
43 modelico 12500 . . . . . . . . . . . . . 14 (((𝐵 · ((𝐴 · 𝑦) mod 1)) ∈ ℝ ∧ 1 ∈ ℝ+) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
4421, 10, 43sylancl 693 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))
45 icodiamlt 13971 . . . . . . . . . . . . 13 (((0 ∈ ℝ ∧ 1 ∈ ℝ) ∧ (((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) ∈ (0[,)1) ∧ ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1) ∈ (0[,)1))) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
4639, 40, 42, 44, 45syl22anc 1319 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < (1 − 0))
47 1m0e1 10981 . . . . . . . . . . . 12 (1 − 0) = 1
4846, 47syl6breq 4619 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1) − ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1))) < 1)
4938, 48eqbrtrd 4600 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5049adantr 480 . . . . . . . . 9 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5130, 50eqbrtrd 4600 . . . . . . . 8 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘(((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) + ((𝐵 · ((𝐴 · 𝑥) mod 1)) mod 1)) − ((⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) + ((𝐵 · ((𝐴 · 𝑦) mod 1)) mod 1)))) < 1)
5226, 51eqbrtrd 4600 . . . . . . 7 (((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1)
5352ex 449 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
5412, 20resubcld 10310 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℝ)
5554recnd 9925 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)) ∈ ℂ)
5655abscld 13972 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ)
57 nngt0 10899 . . . . . . . . . . 11 (𝐵 ∈ ℕ → 0 < 𝐵)
5857ad3antlr 763 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 < 𝐵)
5958gt0ne0d 10444 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ≠ 0)
603, 59rereccld 10704 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (1 / 𝐵) ∈ ℝ)
61 ltmul2 10726 . . . . . . . 8 (((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) ∈ ℝ ∧ (1 / 𝐵) ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
6256, 60, 3, 58, 61syl112anc 1322 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵))))
63 nnnn0 11149 . . . . . . . . . . . . . 14 (𝐵 ∈ ℕ → 𝐵 ∈ ℕ0)
6463nn0ge0d 11204 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ → 0 ≤ 𝐵)
6564ad3antlr 763 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 0 ≤ 𝐵)
663, 65absidd 13958 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘𝐵) = 𝐵)
6766eqcomd 2616 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 = (abs‘𝐵))
6867oveq1d 6542 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
693recnd 9925 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → 𝐵 ∈ ℂ)
7069, 55absmuld 13990 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = ((abs‘𝐵) · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))))
7112recnd 9925 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑥) mod 1) ∈ ℂ)
7220recnd 9925 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐴 · 𝑦) mod 1) ∈ ℂ)
7369, 71, 72subdid 10338 . . . . . . . . . 10 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) = ((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1))))
7473fveq2d 6092 . . . . . . . . 9 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (abs‘(𝐵 · (((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7568, 70, 743eqtr2d 2650 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) = (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))))
7669, 59recidd 10648 . . . . . . . 8 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → (𝐵 · (1 / 𝐵)) = 1)
7775, 76breq12d 4591 . . . . . . 7 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝐵 · (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1)))) < (𝐵 · (1 / 𝐵)) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7862, 77bitrd 267 . . . . . 6 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵) ↔ (abs‘((𝐵 · ((𝐴 · 𝑥) mod 1)) − (𝐵 · ((𝐴 · 𝑦) mod 1)))) < 1))
7953, 78sylibrd 248 . . . . 5 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1))) → (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
8079anim2d 587 . . . 4 ((((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) ∧ 𝑦 ∈ (0...𝐵)) → ((𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → (𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8180reximdva 3000 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℕ) ∧ 𝑥 ∈ (0...𝐵)) → (∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
8281reximdva 3000 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → (∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (⌊‘(𝐵 · ((𝐴 · 𝑥) mod 1))) = (⌊‘(𝐵 · ((𝐴 · 𝑦) mod 1)))) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵))))
831, 82mpd 15 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℕ) → ∃𝑥 ∈ (0...𝐵)∃𝑦 ∈ (0...𝐵)(𝑥 < 𝑦 ∧ (abs‘(((𝐴 · 𝑥) mod 1) − ((𝐴 · 𝑦) mod 1))) < (1 / 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wrex 2897   class class class wbr 4578  cfv 5790  (class class class)co 6527  cr 9792  0cc0 9793  1c1 9794   + caddc 9796   · cmul 9798   < clt 9931  cle 9932  cmin 10118   / cdiv 10536  cn 10870  +crp 11667  [,)cico 12007  ...cfz 12155  cfl 12411   mod cmo 12488  abscabs 13771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-inf 8210  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-ico 12011  df-fz 12156  df-fl 12413  df-mod 12489  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773
This theorem is referenced by:  irrapxlem3  36200
  Copyright terms: Public domain W3C validator