Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmtno4prm Structured version   Visualization version   GIF version

Theorem fmtno4prm 41258
Description: The 4-th Fermat number (65537) is a prime (the fifth Fermat prime). (Contributed by AV, 28-Jul-2021.)
Assertion
Ref Expression
fmtno4prm (FermatNo‘4) ∈ ℙ

Proof of Theorem fmtno4prm
StepHypRef Expression
1 4nn0 11308 . . . 4 4 ∈ ℕ0
2 fmtno 41212 . . . 4 (4 ∈ ℕ0 → (FermatNo‘4) = ((2↑(2↑4)) + 1))
31, 2ax-mp 5 . . 3 (FermatNo‘4) = ((2↑(2↑4)) + 1)
4 2nn 11182 . . . . . 6 2 ∈ ℕ
5 2nn0 11306 . . . . . . 7 2 ∈ ℕ0
65, 1nn0expcli 12881 . . . . . 6 (2↑4) ∈ ℕ0
7 nnexpcl 12868 . . . . . 6 ((2 ∈ ℕ ∧ (2↑4) ∈ ℕ0) → (2↑(2↑4)) ∈ ℕ)
84, 6, 7mp2an 708 . . . . 5 (2↑(2↑4)) ∈ ℕ
9 2re 11087 . . . . . 6 2 ∈ ℝ
10 nnexpcl 12868 . . . . . . 7 ((2 ∈ ℕ ∧ 4 ∈ ℕ0) → (2↑4) ∈ ℕ)
114, 1, 10mp2an 708 . . . . . 6 (2↑4) ∈ ℕ
12 1lt2 11191 . . . . . 6 1 < 2
13 expgt1 12893 . . . . . 6 ((2 ∈ ℝ ∧ (2↑4) ∈ ℕ ∧ 1 < 2) → 1 < (2↑(2↑4)))
149, 11, 12, 13mp3an 1423 . . . . 5 1 < (2↑(2↑4))
15 eluz2b2 11758 . . . . 5 ((2↑(2↑4)) ∈ (ℤ‘2) ↔ ((2↑(2↑4)) ∈ ℕ ∧ 1 < (2↑(2↑4))))
168, 14, 15mpbir2an 955 . . . 4 (2↑(2↑4)) ∈ (ℤ‘2)
17 peano2uz 11738 . . . 4 ((2↑(2↑4)) ∈ (ℤ‘2) → ((2↑(2↑4)) + 1) ∈ (ℤ‘2))
1816, 17ax-mp 5 . . 3 ((2↑(2↑4)) + 1) ∈ (ℤ‘2)
193, 18eqeltri 2696 . 2 (FermatNo‘4) ∈ (ℤ‘2)
20 elinel2 3798 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ ℙ)
2120adantr 481 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∈ ℙ)
22 simpr 477 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ∥ (FermatNo‘4))
23 elinel1 3797 . . . . . . . 8 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))))
24 elfzle2 12342 . . . . . . . 8 (𝑝 ∈ (2...(⌊‘(√‘(FermatNo‘4)))) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2523, 24syl 17 . . . . . . 7 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
2625adantr 481 . . . . . 6 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 ≤ (⌊‘(√‘(FermatNo‘4))))
27 fmtno4prmfac193 41256 . . . . . 6 ((𝑝 ∈ ℙ ∧ 𝑝 ∥ (FermatNo‘4) ∧ 𝑝 ≤ (⌊‘(√‘(FermatNo‘4)))) → 𝑝 = 193)
2821, 22, 26, 27syl3anc 1325 . . . . 5 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → 𝑝 = 193)
29 fmtno4nprmfac193 41257 . . . . . 6 ¬ 193 ∥ (FermatNo‘4)
30 breq1 4654 . . . . . 6 (𝑝 = 193 → (𝑝 ∥ (FermatNo‘4) ↔ 193 ∥ (FermatNo‘4)))
3129, 30mtbiri 317 . . . . 5 (𝑝 = 193 → ¬ 𝑝 ∥ (FermatNo‘4))
3228, 31syl 17 . . . 4 ((𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ∧ 𝑝 ∥ (FermatNo‘4)) → ¬ 𝑝 ∥ (FermatNo‘4))
3332pm2.01da 458 . . 3 (𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) → ¬ 𝑝 ∥ (FermatNo‘4))
3433rgen 2921 . 2 𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)
35 isprm7 15414 . 2 ((FermatNo‘4) ∈ ℙ ↔ ((FermatNo‘4) ∈ (ℤ‘2) ∧ ∀𝑝 ∈ ((2...(⌊‘(√‘(FermatNo‘4)))) ∩ ℙ) ¬ 𝑝 ∥ (FermatNo‘4)))
3619, 34, 35mpbir2an 955 1 (FermatNo‘4) ∈ ℙ
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1482  wcel 1989  wral 2911  cin 3571   class class class wbr 4651  cfv 5886  (class class class)co 6647  cr 9932  1c1 9934   + caddc 9936   < clt 10071  cle 10072  cn 11017  2c2 11067  3c3 11068  4c4 11069  9c9 11074  0cn0 11289  cdc 11490  cuz 11684  ...cfz 12323  cfl 12586  cexp 12855  csqrt 13967  cdvds 14977  cprime 15379  FermatNocfmtno 41210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-inf2 8535  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-pre-sup 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-fal 1488  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-se 5072  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-isom 5895  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-2o 7558  df-oadd 7561  df-er 7739  df-map 7856  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-sup 8345  df-inf 8346  df-oi 8412  df-card 8762  df-cda 8987  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-div 10682  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-xnn0 11361  df-z 11375  df-dec 11491  df-uz 11685  df-q 11786  df-rp 11830  df-ioo 12176  df-ico 12178  df-fz 12324  df-fzo 12462  df-fl 12588  df-mod 12664  df-seq 12797  df-exp 12856  df-fac 13056  df-hash 13113  df-cj 13833  df-re 13834  df-im 13835  df-sqrt 13969  df-abs 13970  df-clim 14213  df-prod 14630  df-dvds 14978  df-gcd 15211  df-prm 15380  df-odz 15464  df-phi 15465  df-pc 15536  df-lgs 25014  df-fmtno 41211
This theorem is referenced by:  65537prm  41259  fmtnofz04prm  41260
  Copyright terms: Public domain W3C validator