MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg1ge0a Structured version   Visualization version   GIF version

Theorem itg1ge0a 24312
Description: The integral of an almost positive simple function is positive. (Contributed by Mario Carneiro, 11-Aug-2014.)
Hypotheses
Ref Expression
itg10a.1 (𝜑𝐹 ∈ dom ∫1)
itg10a.2 (𝜑𝐴 ⊆ ℝ)
itg10a.3 (𝜑 → (vol*‘𝐴) = 0)
itg1ge0a.4 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹𝑥))
Assertion
Ref Expression
itg1ge0a (𝜑 → 0 ≤ (∫1𝐹))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹   𝜑,𝑥

Proof of Theorem itg1ge0a
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 itg10a.1 . . . . 5 (𝜑𝐹 ∈ dom ∫1)
2 i1frn 24278 . . . . 5 (𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin)
31, 2syl 17 . . . 4 (𝜑 → ran 𝐹 ∈ Fin)
4 difss 4108 . . . 4 (ran 𝐹 ∖ {0}) ⊆ ran 𝐹
5 ssfi 8738 . . . 4 ((ran 𝐹 ∈ Fin ∧ (ran 𝐹 ∖ {0}) ⊆ ran 𝐹) → (ran 𝐹 ∖ {0}) ∈ Fin)
63, 4, 5sylancl 588 . . 3 (𝜑 → (ran 𝐹 ∖ {0}) ∈ Fin)
7 i1ff 24277 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
81, 7syl 17 . . . . . . 7 (𝜑𝐹:ℝ⟶ℝ)
98frnd 6521 . . . . . 6 (𝜑 → ran 𝐹 ⊆ ℝ)
109ssdifssd 4119 . . . . 5 (𝜑 → (ran 𝐹 ∖ {0}) ⊆ ℝ)
1110sselda 3967 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℝ)
12 i1fima2sn 24281 . . . . 5 ((𝐹 ∈ dom ∫1𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
131, 12sylan 582 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
1411, 13remulcld 10671 . . 3 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) ∈ ℝ)
15 0le0 11739 . . . . 5 0 ≤ 0
16 i1fima 24279 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹 “ {𝑘}) ∈ dom vol)
171, 16syl 17 . . . . . . . . . 10 (𝜑 → (𝐹 “ {𝑘}) ∈ dom vol)
18 mblvol 24131 . . . . . . . . . 10 ((𝐹 “ {𝑘}) ∈ dom vol → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
1917, 18syl 17 . . . . . . . . 9 (𝜑 → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
2019ad2antrr 724 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
218ffnd 6515 . . . . . . . . . . . . 13 (𝜑𝐹 Fn ℝ)
22 fniniseg 6830 . . . . . . . . . . . . 13 (𝐹 Fn ℝ → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
2321, 22syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
2423ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (𝐹 “ {𝑘}) ↔ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)))
25 simprl 769 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑥 ∈ ℝ)
26 eldif 3946 . . . . . . . . . . . . . . 15 (𝑥 ∈ (ℝ ∖ 𝐴) ↔ (𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴))
27 itg1ge0a.4 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ (ℝ ∖ 𝐴)) → 0 ≤ (𝐹𝑥))
2827ex 415 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹𝑥)))
2928ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → 0 ≤ (𝐹𝑥)))
30 simprr 771 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝐹𝑥) = 𝑘)
3130breq2d 5078 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ (𝐹𝑥) ↔ 0 ≤ 𝑘))
32 0red 10644 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 0 ∈ ℝ)
3311adantr 483 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → 𝑘 ∈ ℝ)
3432, 33lenltd 10786 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ 𝑘 ↔ ¬ 𝑘 < 0))
3531, 34bitrd 281 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (0 ≤ (𝐹𝑥) ↔ ¬ 𝑘 < 0))
3629, 35sylibd 241 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑥 ∈ (ℝ ∖ 𝐴) → ¬ 𝑘 < 0))
3726, 36syl5bir 245 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → ((𝑥 ∈ ℝ ∧ ¬ 𝑥𝐴) → ¬ 𝑘 < 0))
3825, 37mpand 693 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (¬ 𝑥𝐴 → ¬ 𝑘 < 0))
3938con4d 115 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ (𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘)) → (𝑘 < 0 → 𝑥𝐴))
4039impancom 454 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → ((𝑥 ∈ ℝ ∧ (𝐹𝑥) = 𝑘) → 𝑥𝐴))
4124, 40sylbid 242 . . . . . . . . . 10 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑥 ∈ (𝐹 “ {𝑘}) → 𝑥𝐴))
4241ssrdv 3973 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝐹 “ {𝑘}) ⊆ 𝐴)
43 itg10a.2 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ)
4443ad2antrr 724 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝐴 ⊆ ℝ)
45 itg10a.3 . . . . . . . . . 10 (𝜑 → (vol*‘𝐴) = 0)
4645ad2antrr 724 . . . . . . . . 9 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘𝐴) = 0)
47 ovolssnul 24088 . . . . . . . . 9 (((𝐹 “ {𝑘}) ⊆ 𝐴𝐴 ⊆ ℝ ∧ (vol*‘𝐴) = 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
4842, 44, 46, 47syl3anc 1367 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol*‘(𝐹 “ {𝑘})) = 0)
4920, 48eqtrd 2856 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (vol‘(𝐹 “ {𝑘})) = 0)
5049oveq2d 7172 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = (𝑘 · 0))
5111recnd 10669 . . . . . . . 8 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 𝑘 ∈ ℂ)
5251adantr 483 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 𝑘 ∈ ℂ)
5352mul01d 10839 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · 0) = 0)
5450, 53eqtrd 2856 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → (𝑘 · (vol‘(𝐹 “ {𝑘}))) = 0)
5515, 54breqtrrid 5104 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 𝑘 < 0) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
5611adantr 483 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 𝑘 ∈ ℝ)
5713adantr 483 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(𝐹 “ {𝑘})) ∈ ℝ)
58 simpr 487 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ 𝑘)
5917ad2antrr 724 . . . . . . . 8 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (𝐹 “ {𝑘}) ∈ dom vol)
60 mblss 24132 . . . . . . . 8 ((𝐹 “ {𝑘}) ∈ dom vol → (𝐹 “ {𝑘}) ⊆ ℝ)
6159, 60syl 17 . . . . . . 7 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (𝐹 “ {𝑘}) ⊆ ℝ)
62 ovolge0 24082 . . . . . . 7 ((𝐹 “ {𝑘}) ⊆ ℝ → 0 ≤ (vol*‘(𝐹 “ {𝑘})))
6361, 62syl 17 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (vol*‘(𝐹 “ {𝑘})))
6419ad2antrr 724 . . . . . 6 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → (vol‘(𝐹 “ {𝑘})) = (vol*‘(𝐹 “ {𝑘})))
6563, 64breqtrrd 5094 . . . . 5 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (vol‘(𝐹 “ {𝑘})))
6656, 57, 58, 65mulge0d 11217 . . . 4 (((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) ∧ 0 ≤ 𝑘) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
67 0red 10644 . . . 4 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ∈ ℝ)
6855, 66, 11, 67ltlecasei 10748 . . 3 ((𝜑𝑘 ∈ (ran 𝐹 ∖ {0})) → 0 ≤ (𝑘 · (vol‘(𝐹 “ {𝑘}))))
696, 14, 68fsumge0 15150 . 2 (𝜑 → 0 ≤ Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
70 itg1val 24284 . . 3 (𝐹 ∈ dom ∫1 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
711, 70syl 17 . 2 (𝜑 → (∫1𝐹) = Σ𝑘 ∈ (ran 𝐹 ∖ {0})(𝑘 · (vol‘(𝐹 “ {𝑘}))))
7269, 71breqtrrd 5094 1 (𝜑 → 0 ≤ (∫1𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  cdif 3933  wss 3936  {csn 4567   class class class wbr 5066  ccnv 5554  dom cdm 5555  ran crn 5556  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  Fincfn 8509  cc 10535  cr 10536  0cc0 10537   · cmul 10542   < clt 10675  cle 10676  Σcsu 15042  vol*covol 24063  volcvol 24064  1citg1 24216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-sup 8906  df-inf 8907  df-oi 8974  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-q 12350  df-rp 12391  df-xadd 12509  df-ioo 12743  df-ico 12745  df-icc 12746  df-fz 12894  df-fzo 13035  df-fl 13163  df-seq 13371  df-exp 13431  df-hash 13692  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-xmet 20538  df-met 20539  df-ovol 24065  df-vol 24066  df-mbf 24220  df-itg1 24221
This theorem is referenced by:  itg1lea  24313
  Copyright terms: Public domain W3C validator