HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdslmd1i Structured version   Visualization version   GIF version

Theorem mdslmd1i 28366
Description: Preservation of the modular pair property in the one-to-one onto mapping between the two sublattices in Lemma 1.3 of [MaedaMaeda] p. 2 (meet version). (Contributed by NM, 27-Apr-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdslmd.1 𝐴C
mdslmd.2 𝐵C
mdslmd.3 𝐶C
mdslmd.4 𝐷C
Assertion
Ref Expression
mdslmd1i (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))

Proof of Theorem mdslmd1i
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssin 3797 . . 3 ((𝐴𝐶𝐴𝐷) ↔ 𝐴 ⊆ (𝐶𝐷))
2 mdslmd.3 . . . 4 𝐶C
3 mdslmd.4 . . . 4 𝐷C
4 mdslmd.1 . . . . 5 𝐴C
5 mdslmd.2 . . . . 5 𝐵C
64, 5chjcli 27494 . . . 4 (𝐴 𝐵) ∈ C
72, 3, 6chlubi 27508 . . 3 ((𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)) ↔ (𝐶 𝐷) ⊆ (𝐴 𝐵))
81, 7anbi12i 729 . 2 (((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))) ↔ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵)))
9 chjcl 27394 . . . . . . . . . . 11 ((𝑥C𝐴C ) → (𝑥 𝐴) ∈ C )
104, 9mpan2 703 . . . . . . . . . 10 (𝑥C → (𝑥 𝐴) ∈ C )
11 sseq1 3589 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (𝑦𝐷 ↔ (𝑥 𝐴) ⊆ 𝐷))
12 oveq1 6534 . . . . . . . . . . . . . 14 (𝑦 = (𝑥 𝐴) → (𝑦 𝐶) = ((𝑥 𝐴) ∨ 𝐶))
1312ineq1d 3775 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → ((𝑦 𝐶) ∩ 𝐷) = (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷))
14 oveq1 6534 . . . . . . . . . . . . 13 (𝑦 = (𝑥 𝐴) → (𝑦 (𝐶𝐷)) = ((𝑥 𝐴) ∨ (𝐶𝐷)))
1513, 14sseq12d 3597 . . . . . . . . . . . 12 (𝑦 = (𝑥 𝐴) → (((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)) ↔ (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))))
1611, 15imbi12d 333 . . . . . . . . . . 11 (𝑦 = (𝑥 𝐴) → ((𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) ↔ ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1716rspcv 3278 . . . . . . . . . 10 ((𝑥 𝐴) ∈ C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1810, 17syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
1918adantr 480 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷)))))
204, 5, 2, 3mdslmd1lem3 28364 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥 𝐴) ⊆ 𝐷 → (((𝑥 𝐴) ∨ 𝐶) ∩ 𝐷) ⊆ ((𝑥 𝐴) ∨ (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2119, 20syld 46 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
2221ex 449 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2322com3l 87 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → (𝑥C → ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))))
2423ralrimdv 2951 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))) → ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵))))))
25 mdbr2 28333 . . . . 5 ((𝐶C𝐷C ) → (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷)))))
262, 3, 25mp2an 704 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑦C (𝑦𝐷 → ((𝑦 𝐶) ∩ 𝐷) ⊆ (𝑦 (𝐶𝐷))))
272, 5chincli 27497 . . . . 5 (𝐶𝐵) ∈ C
283, 5chincli 27497 . . . . 5 (𝐷𝐵) ∈ C
2927, 28mdsl2i 28359 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑥C ((((𝐶𝐵) ∩ (𝐷𝐵)) ⊆ 𝑥𝑥 ⊆ (𝐷𝐵)) → ((𝑥 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑥 ((𝐶𝐵) ∩ (𝐷𝐵)))))
3024, 26, 293imtr4g 284 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 → (𝐶𝐵) 𝑀 (𝐷𝐵)))
31 chincl 27536 . . . . . . . . . . 11 ((𝑥C𝐵C ) → (𝑥𝐵) ∈ C )
325, 31mpan2 703 . . . . . . . . . 10 (𝑥C → (𝑥𝐵) ∈ C )
33 sseq1 3589 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (𝑦 ⊆ (𝐷𝐵) ↔ (𝑥𝐵) ⊆ (𝐷𝐵)))
34 oveq1 6534 . . . . . . . . . . . . . 14 (𝑦 = (𝑥𝐵) → (𝑦 (𝐶𝐵)) = ((𝑥𝐵) ∨ (𝐶𝐵)))
3534ineq1d 3775 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) = (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)))
36 oveq1 6534 . . . . . . . . . . . . 13 (𝑦 = (𝑥𝐵) → (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) = ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))
3735, 36sseq12d 3597 . . . . . . . . . . . 12 (𝑦 = (𝑥𝐵) → (((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))) ↔ (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))))
3833, 37imbi12d 333 . . . . . . . . . . 11 (𝑦 = (𝑥𝐵) → ((𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) ↔ ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
3938rspcv 3278 . . . . . . . . . 10 ((𝑥𝐵) ∈ C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4032, 39syl 17 . . . . . . . . 9 (𝑥C → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
4140adantr 480 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵))))))
424, 5, 2, 3mdslmd1lem4 28365 . . . . . . . 8 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (((𝑥𝐵) ⊆ (𝐷𝐵) → (((𝑥𝐵) ∨ (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ ((𝑥𝐵) ∨ ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4341, 42syld 46 . . . . . . 7 ((𝑥C ∧ ((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵))))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
4443ex 449 . . . . . 6 (𝑥C → (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4544com3l 87 . . . . 5 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → (𝑥C → (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))))
4645ralrimdv 2951 . . . 4 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))) → ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷)))))
47 mdbr2 28333 . . . . 5 (((𝐶𝐵) ∈ C ∧ (𝐷𝐵) ∈ C ) → ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵))))))
4827, 28, 47mp2an 704 . . . 4 ((𝐶𝐵) 𝑀 (𝐷𝐵) ↔ ∀𝑦C (𝑦 ⊆ (𝐷𝐵) → ((𝑦 (𝐶𝐵)) ∩ (𝐷𝐵)) ⊆ (𝑦 ((𝐶𝐵) ∩ (𝐷𝐵)))))
492, 3mdsl2i 28359 . . . 4 (𝐶 𝑀 𝐷 ↔ ∀𝑥C (((𝐶𝐷) ⊆ 𝑥𝑥𝐷) → ((𝑥 𝐶) ∩ 𝐷) ⊆ (𝑥 (𝐶𝐷))))
5046, 48, 493imtr4g 284 . . 3 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → ((𝐶𝐵) 𝑀 (𝐷𝐵) → 𝐶 𝑀 𝐷))
5130, 50impbid 201 . 2 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ ((𝐴𝐶𝐴𝐷) ∧ (𝐶 ⊆ (𝐴 𝐵) ∧ 𝐷 ⊆ (𝐴 𝐵)))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
528, 51sylan2br 492 1 (((𝐴 𝑀 𝐵𝐵 𝑀* 𝐴) ∧ (𝐴 ⊆ (𝐶𝐷) ∧ (𝐶 𝐷) ⊆ (𝐴 𝐵))) → (𝐶 𝑀 𝐷 ↔ (𝐶𝐵) 𝑀 (𝐷𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  cin 3539  wss 3540   class class class wbr 4578  (class class class)co 6527   C cch 26964   chj 26968   𝑀 cmd 27001   𝑀* cdmd 27002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cc 9118  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871  ax-addf 9872  ax-mulf 9873  ax-hilex 27034  ax-hfvadd 27035  ax-hvcom 27036  ax-hvass 27037  ax-hv0cl 27038  ax-hvaddid 27039  ax-hfvmul 27040  ax-hvmulid 27041  ax-hvmulass 27042  ax-hvdistr1 27043  ax-hvdistr2 27044  ax-hvmul0 27045  ax-hfi 27114  ax-his1 27117  ax-his2 27118  ax-his3 27119  ax-his4 27120  ax-hcompl 27237
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-iin 4453  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-2o 7426  df-oadd 7429  df-omul 7430  df-er 7607  df-map 7724  df-pm 7725  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-fi 8178  df-sup 8209  df-inf 8210  df-oi 8276  df-card 8626  df-acn 8629  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-q 11624  df-rp 11668  df-xneg 11781  df-xadd 11782  df-xmul 11783  df-ioo 12009  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-fl 12413  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-rlim 14017  df-sum 14214  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-rest 15855  df-topn 15856  df-0g 15874  df-gsum 15875  df-topgen 15876  df-pt 15877  df-prds 15880  df-xrs 15934  df-qtop 15939  df-imas 15940  df-xps 15942  df-mre 16018  df-mrc 16019  df-acs 16021  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-submnd 17108  df-mulg 17313  df-cntz 17522  df-cmn 17967  df-psmet 19508  df-xmet 19509  df-met 19510  df-bl 19511  df-mopn 19512  df-fbas 19513  df-fg 19514  df-cnfld 19517  df-top 20469  df-bases 20470  df-topon 20471  df-topsp 20472  df-cld 20581  df-ntr 20582  df-cls 20583  df-nei 20660  df-cn 20789  df-cnp 20790  df-lm 20791  df-haus 20877  df-tx 21123  df-hmeo 21316  df-fil 21408  df-fm 21500  df-flim 21501  df-flf 21502  df-xms 21883  df-ms 21884  df-tms 21885  df-cfil 22806  df-cau 22807  df-cmet 22808  df-grpo 26525  df-gid 26526  df-ginv 26527  df-gdiv 26528  df-ablo 26577  df-vc 26592  df-nv 26625  df-va 26628  df-ba 26629  df-sm 26630  df-0v 26631  df-vs 26632  df-nmcv 26633  df-ims 26634  df-dip 26734  df-ssp 26755  df-ph 26846  df-cbn 26897  df-hnorm 27003  df-hba 27004  df-hvsub 27006  df-hlim 27007  df-hcau 27008  df-sh 27242  df-ch 27256  df-oc 27287  df-ch0 27288  df-shs 27345  df-chj 27347  df-md 28317  df-dmd 28318
This theorem is referenced by:  mdslmd2i  28367  mdcompli  28466
  Copyright terms: Public domain W3C validator