MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem7 Structured version   Visualization version   GIF version

Theorem minveclem7 23114
Description: Lemma for minvec 23115. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem7 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem7
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.x . . 3 𝑋 = (Base‘𝑈)
2 minvec.m . . 3 = (-g𝑈)
3 minvec.n . . 3 𝑁 = (norm‘𝑈)
4 minvec.u . . 3 (𝜑𝑈 ∈ ℂPreHil)
5 minvec.y . . 3 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.w . . 3 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
7 minvec.a . . 3 (𝜑𝐴𝑋)
8 minvec.j . . 3 𝐽 = (TopOpen‘𝑈)
9 minvec.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
10 minvec.s . . 3 𝑆 = inf(𝑅, ℝ, < )
11 minvec.d . . 3 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem5 23112 . 2 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
134ad2antrr 761 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑈 ∈ ℂPreHil)
145ad2antrr 761 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑌 ∈ (LSubSp‘𝑈))
156ad2antrr 761 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → (𝑈s 𝑌) ∈ CMetSp)
167ad2antrr 761 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝐴𝑋)
17 0re 9984 . . . . . . 7 0 ∈ ℝ
1817a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ∈ ℝ)
19 0le0 11054 . . . . . . 7 0 ≤ 0
2019a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ≤ 0)
21 simplrl 799 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑥𝑌)
22 simplrr 800 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑤𝑌)
23 simprl 793 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0))
24 simprr 795 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))
251, 2, 3, 13, 14, 15, 16, 8, 9, 10, 11, 18, 20, 21, 22, 23, 24minveclem2 23105 . . . . 5 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0))
2625ex 450 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0)))
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem6 23113 . . . . . 6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
2827adantrr 752 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem6 23113 . . . . . 6 ((𝜑𝑤𝑌) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
3029adantrl 751 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
3128, 30anbi12d 746 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) ↔ (∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦)))))
32 4cn 11042 . . . . . . 7 4 ∈ ℂ
3332mul01i 10170 . . . . . 6 (4 · 0) = 0
3433breq2i 4621 . . . . 5 (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ ((𝑥𝐷𝑤)↑2) ≤ 0)
35 cphngp 22881 . . . . . . . . . . . 12 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
36 ngpms 22314 . . . . . . . . . . . 12 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
374, 35, 363syl 18 . . . . . . . . . . 11 (𝜑𝑈 ∈ MetSp)
3837adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑈 ∈ MetSp)
391, 11msmet 22172 . . . . . . . . . 10 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝐷 ∈ (Met‘𝑋))
41 eqid 2621 . . . . . . . . . . . . 13 (LSubSp‘𝑈) = (LSubSp‘𝑈)
421, 41lssss 18856 . . . . . . . . . . . 12 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
435, 42syl 17 . . . . . . . . . . 11 (𝜑𝑌𝑋)
4443adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑌𝑋)
45 simprl 793 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑌)
4644, 45sseldd 3584 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑋)
47 simprr 795 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑌)
4844, 47sseldd 3584 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑋)
49 metcl 22047 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → (𝑥𝐷𝑤) ∈ ℝ)
5040, 46, 48, 49syl3anc 1323 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℝ)
5150sqge0d 12976 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 0 ≤ ((𝑥𝐷𝑤)↑2))
5251biantrud 528 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5350resqcld 12975 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤)↑2) ∈ ℝ)
54 letri3 10067 . . . . . . 7 ((((𝑥𝐷𝑤)↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5553, 17, 54sylancl 693 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5650recnd 10012 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℂ)
57 sqeq0 12867 . . . . . . . 8 ((𝑥𝐷𝑤) ∈ ℂ → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
5856, 57syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
59 meteq0 22054 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6040, 46, 48, 59syl3anc 1323 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6158, 60bitrd 268 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ 𝑥 = 𝑤))
6252, 55, 613bitr2d 296 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ 𝑥 = 𝑤))
6334, 62syl5bb 272 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ 𝑥 = 𝑤))
6426, 31, 633imtr3d 282 . . 3 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))) → 𝑥 = 𝑤))
6564ralrimivva 2965 . 2 (𝜑 → ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))) → 𝑥 = 𝑤))
66 oveq2 6612 . . . . . 6 (𝑥 = 𝑤 → (𝐴 𝑥) = (𝐴 𝑤))
6766fveq2d 6152 . . . . 5 (𝑥 = 𝑤 → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 𝑤)))
6867breq1d 4623 . . . 4 (𝑥 = 𝑤 → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
6968ralbidv 2980 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
7069reu4 3382 . 2 (∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))) → 𝑥 = 𝑤)))
7112, 65, 70sylanbrc 697 1 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  ∃!wreu 2909  wss 3555   class class class wbr 4613  cmpt 4673   × cxp 5072  ran crn 5075  cres 5076  cfv 5847  (class class class)co 6604  infcinf 8291  cc 9878  cr 9879  0cc0 9880   + caddc 9883   · cmul 9885   < clt 10018  cle 10019  2c2 11014  4c4 11016  cexp 12800  Basecbs 15781  s cress 15782  distcds 15871  TopOpenctopn 16003  -gcsg 17345  LSubSpclss 18851  Metcme 19651  MetSpcmt 22033  normcnm 22291  NrmGrpcngp 22292  ℂPreHilccph 22874  CMetSpccms 23037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-inf2 8482  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958  ax-addf 9959  ax-mulf 9960
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-tpos 7297  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-ico 12123  df-icc 12124  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-sets 15787  df-ress 15788  df-plusg 15875  df-mulr 15876  df-starv 15877  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-unif 15886  df-rest 16004  df-0g 16023  df-topgen 16025  df-mgm 17163  df-sgrp 17205  df-mnd 17216  df-mhm 17256  df-grp 17346  df-minusg 17347  df-sbg 17348  df-mulg 17462  df-subg 17512  df-ghm 17579  df-cmn 18116  df-abl 18117  df-mgp 18411  df-ur 18423  df-ring 18470  df-cring 18471  df-oppr 18544  df-dvdsr 18562  df-unit 18563  df-invr 18593  df-dvr 18604  df-rnghom 18636  df-drng 18670  df-subrg 18699  df-staf 18766  df-srng 18767  df-lmod 18786  df-lss 18852  df-lmhm 18941  df-lvec 19022  df-sra 19091  df-rgmod 19092  df-psmet 19657  df-xmet 19658  df-met 19659  df-bl 19660  df-mopn 19661  df-fbas 19662  df-fg 19663  df-cnfld 19666  df-phl 19890  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cld 20733  df-ntr 20734  df-cls 20735  df-nei 20812  df-haus 21029  df-fil 21560  df-flim 21653  df-xms 22035  df-ms 22036  df-nm 22297  df-ngp 22298  df-nlm 22301  df-clm 22771  df-cph 22876  df-cfil 22961  df-cmet 22963  df-cms 23040
This theorem is referenced by:  minvec  23115
  Copyright terms: Public domain W3C validator