Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrnheibor Structured version   Visualization version   GIF version

Theorem rrnheibor 33766
Description: Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
rrnheibor.1 𝑋 = (ℝ ↑𝑚 𝐼)
rrnheibor.2 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
rrnheibor.3 𝑇 = (MetOpen‘𝑀)
rrnheibor.4 𝑈 = (MetOpen‘(ℝn𝐼))
Assertion
Ref Expression
rrnheibor ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))

Proof of Theorem rrnheibor
StepHypRef Expression
1 rrnheibor.1 . . . . . 6 𝑋 = (ℝ ↑𝑚 𝐼)
21rrnmet 33758 . . . . 5 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (Met‘𝑋))
3 rrnheibor.2 . . . . . 6 𝑀 = ((ℝn𝐼) ↾ (𝑌 × 𝑌))
4 metres2 22215 . . . . . 6 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
53, 4syl5eqel 2734 . . . . 5 (((ℝn𝐼) ∈ (Met‘𝑋) ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
62, 5sylan 487 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → 𝑀 ∈ (Met‘𝑌))
76biantrurd 528 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp)))
8 rrnheibor.3 . . . 4 𝑇 = (MetOpen‘𝑀)
98heibor 33750 . . 3 ((𝑀 ∈ (Met‘𝑌) ∧ 𝑇 ∈ Comp) ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)))
107, 9syl6bb 276 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌))))
113eleq1i 2721 . . . 4 (𝑀 ∈ (CMet‘𝑌) ↔ ((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
121rrncms 33762 . . . . . 6 (𝐼 ∈ Fin → (ℝn𝐼) ∈ (CMet‘𝑋))
1312adantr 480 . . . . 5 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (ℝn𝐼) ∈ (CMet‘𝑋))
14 rrnheibor.4 . . . . . 6 𝑈 = (MetOpen‘(ℝn𝐼))
1514cmetss 23159 . . . . 5 ((ℝn𝐼) ∈ (CMet‘𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1613, 15syl 17 . . . 4 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (((ℝn𝐼) ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
1711, 16syl5bb 272 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (CMet‘𝑌) ↔ 𝑌 ∈ (Clsd‘𝑈)))
181, 3rrntotbnd 33765 . . . 4 (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
1918adantr 480 . . 3 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌)))
2017, 19anbi12d 747 . 2 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → ((𝑀 ∈ (CMet‘𝑌) ∧ 𝑀 ∈ (TotBnd‘𝑌)) ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
2110, 20bitrd 268 1 ((𝐼 ∈ Fin ∧ 𝑌𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wss 3607   × cxp 5141  cres 5145  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  cr 9973  Metcme 19780  MetOpencmopn 19784  Clsdccld 20868  Compccmp 21237  CMetcms 23098  TotBndctotbnd 33695  Bndcbnd 33696  ncrrn 33754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cc 9295  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-omul 7610  df-er 7787  df-ec 7789  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-acn 8806  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-gz 15681  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-topgen 16151  df-prds 16155  df-pws 16157  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lm 21081  df-haus 21167  df-cmp 21238  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-cfil 23099  df-cau 23100  df-cmet 23101  df-totbnd 33697  df-bnd 33708  df-rrn 33755
This theorem is referenced by:  reheibor  33768
  Copyright terms: Public domain W3C validator