Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismrer1 Structured version   Visualization version   GIF version

Theorem ismrer1 33968
 Description: An isometry between ℝ and ℝ↑1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.)
Hypotheses
Ref Expression
ismrer1.1 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
ismrer1.2 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
Assertion
Ref Expression
ismrer1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝑅(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem ismrer1
Dummy variables 𝑘 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sneq 4331 . . . . . . . 8 (𝑦 = 𝐴 → {𝑦} = {𝐴})
21xpeq1d 5295 . . . . . . 7 (𝑦 = 𝐴 → ({𝑦} × {𝑥}) = ({𝐴} × {𝑥}))
32mpteq2dv 4897 . . . . . 6 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥})))
4 ismrer1.2 . . . . . 6 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥}))
53, 4syl6eqr 2812 . . . . 5 (𝑦 = 𝐴 → (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = 𝐹)
6 f1oeq1 6289 . . . . 5 ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = 𝐹 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦})))
75, 6syl 17 . . . 4 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦})))
81oveq2d 6830 . . . . 5 (𝑦 = 𝐴 → (ℝ ↑𝑚 {𝑦}) = (ℝ ↑𝑚 {𝐴}))
9 f1oeq3 6291 . . . . 5 ((ℝ ↑𝑚 {𝑦}) = (ℝ ↑𝑚 {𝐴}) → (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴})))
108, 9syl 17 . . . 4 (𝑦 = 𝐴 → (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴})))
117, 10bitrd 268 . . 3 (𝑦 = 𝐴 → ((𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦}) ↔ 𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴})))
12 eqid 2760 . . . 4 {𝑦} = {𝑦}
13 reex 10239 . . . 4 ℝ ∈ V
14 vex 3343 . . . 4 𝑦 ∈ V
15 eqid 2760 . . . 4 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})) = (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥}))
1612, 13, 14, 15mapsnf1o3 8074 . . 3 (𝑥 ∈ ℝ ↦ ({𝑦} × {𝑥})):ℝ–1-1-onto→(ℝ ↑𝑚 {𝑦})
1711, 16vtoclg 3406 . 2 (𝐴𝑉𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴}))
18 sneq 4331 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
1918xpeq2d 5296 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑦}))
20 snex 5057 . . . . . . . . . . . . . . . . 17 {𝐴} ∈ V
21 snex 5057 . . . . . . . . . . . . . . . . 17 {𝑥} ∈ V
2220, 21xpex 7128 . . . . . . . . . . . . . . . 16 ({𝐴} × {𝑥}) ∈ V
2319, 4, 22fvmpt3i 6450 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (𝐹𝑦) = ({𝐴} × {𝑦}))
2423fveq1d 6355 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
2524adantr 472 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑦)‘𝐴) = (({𝐴} × {𝑦})‘𝐴))
26 snidg 4351 . . . . . . . . . . . . . 14 (𝐴𝑉𝐴 ∈ {𝐴})
27 fvconst2g 6632 . . . . . . . . . . . . . 14 ((𝑦 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2814, 26, 27sylancr 698 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑦})‘𝐴) = 𝑦)
2925, 28sylan9eqr 2816 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)‘𝐴) = 𝑦)
30 sneq 4331 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑧 → {𝑥} = {𝑧})
3130xpeq2d 5296 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑧 → ({𝐴} × {𝑥}) = ({𝐴} × {𝑧}))
3231, 4, 22fvmpt3i 6450 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ → (𝐹𝑧) = ({𝐴} × {𝑧}))
3332fveq1d 6355 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
3433adantl 473 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝐹𝑧)‘𝐴) = (({𝐴} × {𝑧})‘𝐴))
35 vex 3343 . . . . . . . . . . . . . 14 𝑧 ∈ V
36 fvconst2g 6632 . . . . . . . . . . . . . 14 ((𝑧 ∈ V ∧ 𝐴 ∈ {𝐴}) → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3735, 26, 36sylancr 698 . . . . . . . . . . . . 13 (𝐴𝑉 → (({𝐴} × {𝑧})‘𝐴) = 𝑧)
3834, 37sylan9eqr 2816 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑧)‘𝐴) = 𝑧)
3929, 38oveq12d 6832 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)) = (𝑦𝑧))
4039oveq1d 6829 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((𝑦𝑧)↑2))
41 resubcl 10557 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑧) ∈ ℝ)
4241adantl 473 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℝ)
43 absresq 14261 . . . . . . . . . . 11 ((𝑦𝑧) ∈ ℝ → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4442, 43syl 17 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) = ((𝑦𝑧)↑2))
4540, 44eqtr4d 2797 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) = ((abs‘(𝑦𝑧))↑2))
4642recnd 10280 . . . . . . . . . . . 12 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑧) ∈ ℂ)
4746abscld 14394 . . . . . . . . . . 11 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℝ)
4847recnd 10280 . . . . . . . . . 10 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (abs‘(𝑦𝑧)) ∈ ℂ)
4948sqcld 13220 . . . . . . . . 9 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((abs‘(𝑦𝑧))↑2) ∈ ℂ)
5045, 49eqeltrd 2839 . . . . . . . 8 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ)
51 fveq2 6353 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑦)‘𝑘) = ((𝐹𝑦)‘𝐴))
52 fveq2 6353 . . . . . . . . . . 11 (𝑘 = 𝐴 → ((𝐹𝑧)‘𝑘) = ((𝐹𝑧)‘𝐴))
5351, 52oveq12d 6832 . . . . . . . . . 10 (𝑘 = 𝐴 → (((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘)) = (((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴)))
5453oveq1d 6829 . . . . . . . . 9 (𝑘 = 𝐴 → ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5554sumsn 14694 . . . . . . . 8 ((𝐴𝑉 ∧ ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2) ∈ ℂ) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5650, 55syldan 488 . . . . . . 7 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((((𝐹𝑦)‘𝐴) − ((𝐹𝑧)‘𝐴))↑2))
5756, 45eqtrd 2794 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2) = ((abs‘(𝑦𝑧))↑2))
5857fveq2d 6357 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (√‘((abs‘(𝑦𝑧))↑2)))
5946absge0d 14402 . . . . . 6 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → 0 ≤ (abs‘(𝑦𝑧)))
6047, 59sqrtsqd 14377 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘((abs‘(𝑦𝑧))↑2)) = (abs‘(𝑦𝑧)))
6158, 60eqtrd 2794 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)) = (abs‘(𝑦𝑧)))
62 f1of 6299 . . . . . . . 8 (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴}) → 𝐹:ℝ⟶(ℝ ↑𝑚 {𝐴}))
6317, 62syl 17 . . . . . . 7 (𝐴𝑉𝐹:ℝ⟶(ℝ ↑𝑚 {𝐴}))
6463ffvelrnda 6523 . . . . . 6 ((𝐴𝑉𝑦 ∈ ℝ) → (𝐹𝑦) ∈ (ℝ ↑𝑚 {𝐴}))
6563ffvelrnda 6523 . . . . . 6 ((𝐴𝑉𝑧 ∈ ℝ) → (𝐹𝑧) ∈ (ℝ ↑𝑚 {𝐴}))
6664, 65anim12dan 918 . . . . 5 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦) ∈ (ℝ ↑𝑚 {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑𝑚 {𝐴})))
67 snfi 8205 . . . . . 6 {𝐴} ∈ Fin
68 eqid 2760 . . . . . . 7 (ℝ ↑𝑚 {𝐴}) = (ℝ ↑𝑚 {𝐴})
6968rrnmval 33958 . . . . . 6 (({𝐴} ∈ Fin ∧ (𝐹𝑦) ∈ (ℝ ↑𝑚 {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑𝑚 {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
7067, 69mp3an1 1560 . . . . 5 (((𝐹𝑦) ∈ (ℝ ↑𝑚 {𝐴}) ∧ (𝐹𝑧) ∈ (ℝ ↑𝑚 {𝐴})) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
7166, 70syl 17 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)) = (√‘Σ𝑘 ∈ {𝐴} ((((𝐹𝑦)‘𝑘) − ((𝐹𝑧)‘𝑘))↑2)))
72 ismrer1.1 . . . . . 6 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ))
7372remetdval 22813 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7473adantl 473 . . . 4 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = (abs‘(𝑦𝑧)))
7561, 71, 743eqtr4rd 2805 . . 3 ((𝐴𝑉 ∧ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) → (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7675ralrimivva 3109 . 2 (𝐴𝑉 → ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))
7772rexmet 22815 . . 3 𝑅 ∈ (∞Met‘ℝ)
7868rrnmet 33959 . . . 4 ({𝐴} ∈ Fin → (ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑𝑚 {𝐴})))
79 metxmet 22360 . . . 4 ((ℝn‘{𝐴}) ∈ (Met‘(ℝ ↑𝑚 {𝐴})) → (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑𝑚 {𝐴})))
8067, 78, 79mp2b 10 . . 3 (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑𝑚 {𝐴}))
81 isismty 33931 . . 3 ((𝑅 ∈ (∞Met‘ℝ) ∧ (ℝn‘{𝐴}) ∈ (∞Met‘(ℝ ↑𝑚 {𝐴}))) → (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧)))))
8277, 80, 81mp2an 710 . 2 (𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})) ↔ (𝐹:ℝ–1-1-onto→(ℝ ↑𝑚 {𝐴}) ∧ ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦𝑅𝑧) = ((𝐹𝑦)(ℝn‘{𝐴})(𝐹𝑧))))
8317, 76, 82sylanbrc 701 1 (𝐴𝑉𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴})))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  Vcvv 3340  {csn 4321   ↦ cmpt 4881   × cxp 5264   ↾ cres 5268   ∘ ccom 5270  ⟶wf 6045  –1-1-onto→wf1o 6048  ‘cfv 6049  (class class class)co 6814   ↑𝑚 cmap 8025  Fincfn 8123  ℂcc 10146  ℝcr 10147   − cmin 10478  2c2 11282  ↑cexp 13074  √csqrt 14192  abscabs 14193  Σcsu 14635  ∞Metcxmt 19953  Metcme 19954   Ismty cismty 33928  ℝncrrn 33955 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-map 8027  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-sup 8515  df-oi 8582  df-card 8975  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-xadd 12160  df-ico 12394  df-fz 12540  df-fzo 12680  df-seq 13016  df-exp 13075  df-hash 13332  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-clim 14438  df-sum 14636  df-xmet 19961  df-met 19962  df-ismty 33929  df-rrn 33956 This theorem is referenced by:  reheibor  33969
 Copyright terms: Public domain W3C validator