ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0cld GIF version

Theorem 0cld 12063
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
0cld (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))

Proof of Theorem 0cld
StepHypRef Expression
1 dif0 3380 . . 3 ( 𝐽 ∖ ∅) = 𝐽
21topopn 11957 . 2 (𝐽 ∈ Top → ( 𝐽 ∖ ∅) ∈ 𝐽)
3 0ss 3348 . . 3 ∅ ⊆ 𝐽
4 eqid 2100 . . . 4 𝐽 = 𝐽
54iscld2 12055 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
63, 5mpan2 419 . 2 (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
72, 6mpbird 166 1 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 1448  cdif 3018  wss 3021  c0 3310   cuni 3683  cfv 5059  Topctop 11946  Clsdccld 12043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-iota 5024  df-fun 5061  df-fv 5067  df-top 11947  df-cld 12046
This theorem is referenced by:  iuncld  12066  cls0  12084
  Copyright terms: Public domain W3C validator