ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0cld GIF version

Theorem 0cld 13548
Description: The empty set is closed. Part of Theorem 6.1(1) of [Munkres] p. 93. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
0cld (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))

Proof of Theorem 0cld
StepHypRef Expression
1 dif0 3493 . . 3 ( 𝐽 ∖ ∅) = 𝐽
21topopn 13444 . 2 (𝐽 ∈ Top → ( 𝐽 ∖ ∅) ∈ 𝐽)
3 0ss 3461 . . 3 ∅ ⊆ 𝐽
4 eqid 2177 . . . 4 𝐽 = 𝐽
54iscld2 13540 . . 3 ((𝐽 ∈ Top ∧ ∅ ⊆ 𝐽) → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
63, 5mpan2 425 . 2 (𝐽 ∈ Top → (∅ ∈ (Clsd‘𝐽) ↔ ( 𝐽 ∖ ∅) ∈ 𝐽))
72, 6mpbird 167 1 (𝐽 ∈ Top → ∅ ∈ (Clsd‘𝐽))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2148  cdif 3126  wss 3129  c0 3422   cuni 3809  cfv 5216  Topctop 13433  Clsdccld 13528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-pow 4174  ax-pr 4209
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-iota 5178  df-fun 5218  df-fv 5224  df-top 13434  df-cld 13531
This theorem is referenced by:  iuncld  13551  cls0  13569
  Copyright terms: Public domain W3C validator