ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2wlklem Unicode version

Theorem 2wlklem 16095
Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.)
Assertion
Ref Expression
2wlklem  |-  ( A. k  e.  { 0 ,  1 }  ( E `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( ( E `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( E `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) )
Distinct variable groups:    k, E    k, F    P, k

Proof of Theorem 2wlklem
StepHypRef Expression
1 c0ex 8148 . 2  |-  0  e.  _V
2 1ex 8149 . 2  |-  1  e.  _V
3 2fveq3 5634 . . 3  |-  ( k  =  0  ->  ( E `  ( F `  k ) )  =  ( E `  ( F `  0 )
) )
4 fveq2 5629 . . . 4  |-  ( k  =  0  ->  ( P `  k )  =  ( P ` 
0 ) )
5 fv0p1e1 9233 . . . 4  |-  ( k  =  0  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
1 ) )
64, 5preq12d 3751 . . 3  |-  ( k  =  0  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P ` 
0 ) ,  ( P `  1 ) } )
73, 6eqeq12d 2244 . 2  |-  ( k  =  0  ->  (
( E `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( E `  ( F `  0
) )  =  {
( P `  0
) ,  ( P `
 1 ) } ) )
8 2fveq3 5634 . . 3  |-  ( k  =  1  ->  ( E `  ( F `  k ) )  =  ( E `  ( F `  1 )
) )
9 fveq2 5629 . . . 4  |-  ( k  =  1  ->  ( P `  k )  =  ( P ` 
1 ) )
10 oveq1 6014 . . . . . 6  |-  ( k  =  1  ->  (
k  +  1 )  =  ( 1  +  1 ) )
11 1p1e2 9235 . . . . . 6  |-  ( 1  +  1 )  =  2
1210, 11eqtrdi 2278 . . . . 5  |-  ( k  =  1  ->  (
k  +  1 )  =  2 )
1312fveq2d 5633 . . . 4  |-  ( k  =  1  ->  ( P `  ( k  +  1 ) )  =  ( P ` 
2 ) )
149, 13preq12d 3751 . . 3  |-  ( k  =  1  ->  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  =  { ( P ` 
1 ) ,  ( P `  2 ) } )
158, 14eqeq12d 2244 . 2  |-  ( k  =  1  ->  (
( E `  ( F `  k )
)  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( E `  ( F `  1
) )  =  {
( P `  1
) ,  ( P `
 2 ) } ) )
161, 2, 7, 15ralpr 3721 1  |-  ( A. k  e.  { 0 ,  1 }  ( E `  ( F `  k ) )  =  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  <->  ( ( E `
 ( F ` 
0 ) )  =  { ( P ` 
0 ) ,  ( P `  1 ) }  /\  ( E `
 ( F ` 
1 ) )  =  { ( P ` 
1 ) ,  ( P `  2 ) } ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1395   A.wral 2508   {cpr 3667   ` cfv 5318  (class class class)co 6007   0cc0 8007   1c1 8008    + caddc 8010   2c2 9169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-1cn 8100  ax-icn 8102  ax-addcl 8103  ax-mulcl 8105  ax-addcom 8107  ax-i2m1 8112  ax-0id 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6010  df-2 9177
This theorem is referenced by:  upgr2wlkdc  16096
  Copyright terms: Public domain W3C validator