| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2wlklem | Unicode version | ||
| Description: Lemma for theorems for walks of length 2. (Contributed by Alexander van der Vekens, 1-Feb-2018.) |
| Ref | Expression |
|---|---|
| 2wlklem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | c0ex 8148 |
. 2
| |
| 2 | 1ex 8149 |
. 2
| |
| 3 | 2fveq3 5634 |
. . 3
| |
| 4 | fveq2 5629 |
. . . 4
| |
| 5 | fv0p1e1 9233 |
. . . 4
| |
| 6 | 4, 5 | preq12d 3751 |
. . 3
|
| 7 | 3, 6 | eqeq12d 2244 |
. 2
|
| 8 | 2fveq3 5634 |
. . 3
| |
| 9 | fveq2 5629 |
. . . 4
| |
| 10 | oveq1 6014 |
. . . . . 6
| |
| 11 | 1p1e2 9235 |
. . . . . 6
| |
| 12 | 10, 11 | eqtrdi 2278 |
. . . . 5
|
| 13 | 12 | fveq2d 5633 |
. . . 4
|
| 14 | 9, 13 | preq12d 3751 |
. . 3
|
| 15 | 8, 14 | eqeq12d 2244 |
. 2
|
| 16 | 1, 2, 7, 15 | ralpr 3721 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-mulcl 8105 ax-addcom 8107 ax-i2m1 8112 ax-0id 8115 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6010 df-2 9177 |
| This theorem is referenced by: upgr2wlkdc 16096 |
| Copyright terms: Public domain | W3C validator |