| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8094 |
. 2
| |
| 2 | 1 | elexi 2786 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 ax-1cn 8048 ax-icn 8050 ax-addcl 8051 ax-mulcl 8053 ax-i2m1 8060 |
| This theorem depends on definitions: df-bi 117 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: elnn0 9327 nn0ex 9331 un0mulcl 9359 nn0ssz 9420 nn0ind-raph 9520 ser0f 10711 fser0const 10712 facnn 10904 fac0 10905 prhash2ex 10986 wrdexb 11038 s1rn 11105 eqs1 11115 iserge0 11739 sum0 11784 isumz 11785 fisumss 11788 0bits 12355 bezoutlemmain 12404 lcmval 12470 dvef 15284 plyval 15289 elply2 15292 plyss 15295 elplyd 15298 ply1term 15300 plymullem 15307 plyco 15316 plycj 15318 2o01f 16101 iswomni0 16162 |
| Copyright terms: Public domain | W3C validator |