![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version |
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
c0ex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 8013 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | elexi 2772 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-i2m1 7979 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: elnn0 9245 nn0ex 9249 un0mulcl 9277 nn0ssz 9338 nn0ind-raph 9437 ser0f 10608 fser0const 10609 facnn 10801 fac0 10802 prhash2ex 10883 wrdexb 10929 iserge0 11489 sum0 11534 isumz 11535 fisumss 11538 bezoutlemmain 12138 lcmval 12204 dvef 14906 plyval 14911 elply2 14914 plyss 14917 elplyd 14920 ply1term 14922 plymullem 14929 plyco 14937 plycj 14939 2o01f 15557 iswomni0 15611 |
Copyright terms: Public domain | W3C validator |