| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8064 |
. 2
| |
| 2 | 1 | elexi 2784 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-ext 2187 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-i2m1 8030 |
| This theorem depends on definitions: df-bi 117 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-v 2774 |
| This theorem is referenced by: elnn0 9297 nn0ex 9301 un0mulcl 9329 nn0ssz 9390 nn0ind-raph 9490 ser0f 10679 fser0const 10680 facnn 10872 fac0 10873 prhash2ex 10954 wrdexb 11006 s1rn 11072 eqs1 11082 iserge0 11654 sum0 11699 isumz 11700 fisumss 11703 0bits 12270 bezoutlemmain 12319 lcmval 12385 dvef 15199 plyval 15204 elply2 15207 plyss 15210 elplyd 15213 ply1term 15215 plymullem 15222 plyco 15231 plycj 15233 2o01f 15931 iswomni0 15990 |
| Copyright terms: Public domain | W3C validator |