| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8035 |
. 2
| |
| 2 | 1 | elexi 2775 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 ax-1cn 7989 ax-icn 7991 ax-addcl 7992 ax-mulcl 7994 ax-i2m1 8001 |
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: elnn0 9268 nn0ex 9272 un0mulcl 9300 nn0ssz 9361 nn0ind-raph 9460 ser0f 10643 fser0const 10644 facnn 10836 fac0 10837 prhash2ex 10918 wrdexb 10964 iserge0 11525 sum0 11570 isumz 11571 fisumss 11574 0bits 12141 bezoutlemmain 12190 lcmval 12256 dvef 15047 plyval 15052 elply2 15055 plyss 15058 elplyd 15061 ply1term 15063 plymullem 15070 plyco 15079 plycj 15081 2o01f 15725 iswomni0 15782 |
| Copyright terms: Public domain | W3C validator |