ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex Unicode version

Theorem c0ex 7954
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex  |-  0  e.  _V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7952 . 2  |-  0  e.  CC
21elexi 2751 1  |-  0  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739   CCcc 7812   0cc0 7814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159  ax-1cn 7907  ax-icn 7909  ax-addcl 7910  ax-mulcl 7912  ax-i2m1 7919
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  elnn0  9181  nn0ex  9185  un0mulcl  9213  nn0ssz  9274  nn0ind-raph  9373  ser0f  10518  fser0const  10519  facnn  10710  fac0  10711  prhash2ex  10792  iserge0  11354  sum0  11399  isumz  11400  fisumss  11403  bezoutlemmain  12002  lcmval  12066  dvef  14328  2o01f  14887  iswomni0  14940
  Copyright terms: Public domain W3C validator