![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version |
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
c0ex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7543 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | elexi 2634 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1382 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-ext 2071 ax-1cn 7501 ax-icn 7503 ax-addcl 7504 ax-mulcl 7506 ax-i2m1 7513 |
This theorem depends on definitions: df-bi 116 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-v 2624 |
This theorem is referenced by: elnn0 8738 nn0ex 8742 un0mulcl 8770 nn0ssz 8831 nn0ind-raph 8926 iser0f 10011 ser0f 10013 fser0const 10014 facnn 10198 fac0 10199 prhash2ex 10280 iserge0 10795 sum0 10843 isumz 10844 fisumss 10847 bezoutlemmain 11328 lcmval 11386 |
Copyright terms: Public domain | W3C validator |