ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex Unicode version

Theorem c0ex 7545
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex  |-  0  e.  _V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7543 . 2  |-  0  e.  CC
21elexi 2634 1  |-  0  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1439   _Vcvv 2622   CCcc 7411   0cc0 7413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1382  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-ext 2071  ax-1cn 7501  ax-icn 7503  ax-addcl 7504  ax-mulcl 7506  ax-i2m1 7513
This theorem depends on definitions:  df-bi 116  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-v 2624
This theorem is referenced by:  elnn0  8738  nn0ex  8742  un0mulcl  8770  nn0ssz  8831  nn0ind-raph  8926  iser0f  10011  ser0f  10013  fser0const  10014  facnn  10198  fac0  10199  prhash2ex  10280  iserge0  10795  sum0  10843  isumz  10844  fisumss  10847  bezoutlemmain  11328  lcmval  11386
  Copyright terms: Public domain W3C validator