ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex Unicode version

Theorem c0ex 8136
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex  |-  0  e.  _V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 8134 . 2  |-  0  e.  CC
21elexi 2812 1  |-  0  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2200   _Vcvv 2799   CCcc 7993   0cc0 7995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-ext 2211  ax-1cn 8088  ax-icn 8090  ax-addcl 8091  ax-mulcl 8093  ax-i2m1 8100
This theorem depends on definitions:  df-bi 117  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by:  elnn0  9367  nn0ex  9371  un0mulcl  9399  nn0ssz  9460  nn0ind-raph  9560  ser0f  10751  fser0const  10752  facnn  10944  fac0  10945  prhash2ex  11026  wrdexb  11078  s1rn  11146  eqs1  11156  iserge0  11849  sum0  11894  isumz  11895  fisumss  11898  0bits  12465  bezoutlemmain  12514  lcmval  12580  dvef  15395  plyval  15400  elply2  15403  plyss  15406  elplyd  15409  ply1term  15411  plymullem  15418  plyco  15427  plycj  15429  2o01f  16317  iswomni0  16378
  Copyright terms: Public domain W3C validator