ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex Unicode version

Theorem c0ex 7461
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex  |-  0  e.  _V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7459 . 2  |-  0  e.  CC
21elexi 2631 1  |-  0  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1438   _Vcvv 2619   CCcc 7327   0cc0 7329
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1381  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-ext 2070  ax-1cn 7417  ax-icn 7419  ax-addcl 7420  ax-mulcl 7422  ax-i2m1 7429
This theorem depends on definitions:  df-bi 115  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-v 2621
This theorem is referenced by:  elnn0  8645  nn0ex  8649  un0mulcl  8677  nn0ssz  8738  nn0ind-raph  8833  iser0f  9913  ser0f  9915  fser0const  9916  facnn  10100  fac0  10101  prhash2ex  10182  iserge0  10696  sum0  10744  isumz  10745  fisumss  10748  bezoutlemmain  11069  lcmval  11127
  Copyright terms: Public domain W3C validator