ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex Unicode version

Theorem c0ex 7772
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex  |-  0  e.  _V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7770 . 2  |-  0  e.  CC
21elexi 2698 1  |-  0  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 1480   _Vcvv 2686   CCcc 7630   0cc0 7632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1423  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2121  ax-1cn 7725  ax-icn 7727  ax-addcl 7728  ax-mulcl 7730  ax-i2m1 7737
This theorem depends on definitions:  df-bi 116  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-v 2688
This theorem is referenced by:  elnn0  8991  nn0ex  8995  un0mulcl  9023  nn0ssz  9084  nn0ind-raph  9180  ser0f  10300  fser0const  10301  facnn  10485  fac0  10486  prhash2ex  10567  iserge0  11124  sum0  11169  isumz  11170  fisumss  11173  bezoutlemmain  11697  lcmval  11755  dvef  12871  isomninnlem  13286
  Copyright terms: Public domain W3C validator