ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex Unicode version

Theorem c0ex 7953
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex  |-  0  e.  _V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 7951 . 2  |-  0  e.  CC
21elexi 2751 1  |-  0  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739   CCcc 7811   0cc0 7813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-ext 2159  ax-1cn 7906  ax-icn 7908  ax-addcl 7909  ax-mulcl 7911  ax-i2m1 7918
This theorem depends on definitions:  df-bi 117  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by:  elnn0  9180  nn0ex  9184  un0mulcl  9212  nn0ssz  9273  nn0ind-raph  9372  ser0f  10517  fser0const  10518  facnn  10709  fac0  10710  prhash2ex  10791  iserge0  11353  sum0  11398  isumz  11399  fisumss  11402  bezoutlemmain  12001  lcmval  12065  dvef  14273  2o01f  14831  iswomni0  14884
  Copyright terms: Public domain W3C validator