![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version |
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
c0ex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7952 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | elexi 2751 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-ext 2159 ax-1cn 7907 ax-icn 7909 ax-addcl 7910 ax-mulcl 7912 ax-i2m1 7919 |
This theorem depends on definitions: df-bi 117 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-v 2741 |
This theorem is referenced by: elnn0 9181 nn0ex 9185 un0mulcl 9213 nn0ssz 9274 nn0ind-raph 9373 ser0f 10518 fser0const 10519 facnn 10710 fac0 10711 prhash2ex 10792 iserge0 11354 sum0 11399 isumz 11400 fisumss 11403 bezoutlemmain 12002 lcmval 12066 dvef 14328 2o01f 14887 iswomni0 14940 |
Copyright terms: Public domain | W3C validator |