ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  c0ex Unicode version

Theorem c0ex 8096
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
Assertion
Ref Expression
c0ex  |-  0  e.  _V

Proof of Theorem c0ex
StepHypRef Expression
1 0cn 8094 . 2  |-  0  e.  CC
21elexi 2786 1  |-  0  e.  _V
Colors of variables: wff set class
Syntax hints:    e. wcel 2177   _Vcvv 2773   CCcc 7953   0cc0 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-ext 2188  ax-1cn 8048  ax-icn 8050  ax-addcl 8051  ax-mulcl 8053  ax-i2m1 8060
This theorem depends on definitions:  df-bi 117  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-v 2775
This theorem is referenced by:  elnn0  9327  nn0ex  9331  un0mulcl  9359  nn0ssz  9420  nn0ind-raph  9520  ser0f  10711  fser0const  10712  facnn  10904  fac0  10905  prhash2ex  10986  wrdexb  11038  s1rn  11105  eqs1  11115  iserge0  11739  sum0  11784  isumz  11785  fisumss  11788  0bits  12355  bezoutlemmain  12404  lcmval  12470  dvef  15284  plyval  15289  elply2  15292  plyss  15295  elplyd  15298  ply1term  15300  plymullem  15307  plyco  15316  plycj  15318  2o01f  16101  iswomni0  16162
  Copyright terms: Public domain W3C validator