![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version |
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
c0ex |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 8011 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | elexi 2772 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-i2m1 7977 |
This theorem depends on definitions: df-bi 117 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: elnn0 9242 nn0ex 9246 un0mulcl 9274 nn0ssz 9335 nn0ind-raph 9434 ser0f 10605 fser0const 10606 facnn 10798 fac0 10799 prhash2ex 10880 wrdexb 10926 iserge0 11486 sum0 11531 isumz 11532 fisumss 11535 bezoutlemmain 12135 lcmval 12201 dvef 14873 plyval 14878 elply2 14881 plyss 14884 elplyd 14887 ply1term 14889 plymullem 14896 2o01f 15487 iswomni0 15541 |
Copyright terms: Public domain | W3C validator |