| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8063 |
. 2
| |
| 2 | 1 | elexi 2783 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 ax-1cn 8017 ax-icn 8019 ax-addcl 8020 ax-mulcl 8022 ax-i2m1 8029 |
| This theorem depends on definitions: df-bi 117 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: elnn0 9296 nn0ex 9300 un0mulcl 9328 nn0ssz 9389 nn0ind-raph 9489 ser0f 10677 fser0const 10678 facnn 10870 fac0 10871 prhash2ex 10952 wrdexb 11004 iserge0 11596 sum0 11641 isumz 11642 fisumss 11645 0bits 12212 bezoutlemmain 12261 lcmval 12327 dvef 15141 plyval 15146 elply2 15149 plyss 15152 elplyd 15155 ply1term 15157 plymullem 15164 plyco 15173 plycj 15175 2o01f 15864 iswomni0 15923 |
| Copyright terms: Public domain | W3C validator |