Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version |
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
c0ex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7912 | . 2 | |
2 | 1 | elexi 2742 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2141 cvv 2730 cc 7772 cc0 7774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 ax-1cn 7867 ax-icn 7869 ax-addcl 7870 ax-mulcl 7872 ax-i2m1 7879 |
This theorem depends on definitions: df-bi 116 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: elnn0 9137 nn0ex 9141 un0mulcl 9169 nn0ssz 9230 nn0ind-raph 9329 ser0f 10471 fser0const 10472 facnn 10661 fac0 10662 prhash2ex 10744 iserge0 11306 sum0 11351 isumz 11352 fisumss 11355 bezoutlemmain 11953 lcmval 12017 dvef 13482 2o01f 14029 iswomni0 14083 |
Copyright terms: Public domain | W3C validator |