| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) | 
| Ref | Expression | 
|---|---|
| c0ex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0cn 8018 | 
. 2
 | |
| 2 | 1 | elexi 2775 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 ax-1cn 7972 ax-icn 7974 ax-addcl 7975 ax-mulcl 7977 ax-i2m1 7984 | 
| This theorem depends on definitions: df-bi 117 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: elnn0 9251 nn0ex 9255 un0mulcl 9283 nn0ssz 9344 nn0ind-raph 9443 ser0f 10626 fser0const 10627 facnn 10819 fac0 10820 prhash2ex 10901 wrdexb 10947 iserge0 11508 sum0 11553 isumz 11554 fisumss 11557 bezoutlemmain 12165 lcmval 12231 dvef 14963 plyval 14968 elply2 14971 plyss 14974 elplyd 14977 ply1term 14979 plymullem 14986 plyco 14995 plycj 14997 2o01f 15641 iswomni0 15695 | 
| Copyright terms: Public domain | W3C validator |