| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version | ||
| Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| c0ex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cn 8134 |
. 2
| |
| 2 | 1 | elexi 2812 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-ext 2211 ax-1cn 8088 ax-icn 8090 ax-addcl 8091 ax-mulcl 8093 ax-i2m1 8100 |
| This theorem depends on definitions: df-bi 117 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: elnn0 9367 nn0ex 9371 un0mulcl 9399 nn0ssz 9460 nn0ind-raph 9560 ser0f 10751 fser0const 10752 facnn 10944 fac0 10945 prhash2ex 11026 wrdexb 11078 s1rn 11146 eqs1 11156 iserge0 11849 sum0 11894 isumz 11895 fisumss 11898 0bits 12465 bezoutlemmain 12514 lcmval 12580 dvef 15395 plyval 15400 elply2 15403 plyss 15406 elplyd 15409 ply1term 15411 plymullem 15418 plyco 15427 plycj 15429 2o01f 16317 iswomni0 16378 |
| Copyright terms: Public domain | W3C validator |