Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > c0ex | Unicode version |
Description: 0 is a set (common case). (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
c0ex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0cn 7891 | . 2 | |
2 | 1 | elexi 2738 | 1 |
Colors of variables: wff set class |
Syntax hints: wcel 2136 cvv 2726 cc 7751 cc0 7753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-i2m1 7858 |
This theorem depends on definitions: df-bi 116 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-v 2728 |
This theorem is referenced by: elnn0 9116 nn0ex 9120 un0mulcl 9148 nn0ssz 9209 nn0ind-raph 9308 ser0f 10450 fser0const 10451 facnn 10640 fac0 10641 prhash2ex 10722 iserge0 11284 sum0 11329 isumz 11330 fisumss 11333 bezoutlemmain 11931 lcmval 11995 dvef 13328 2o01f 13876 iswomni0 13930 |
Copyright terms: Public domain | W3C validator |