Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  iswomni0 Unicode version

Theorem iswomni0 14083
Description: Weak omniscience stated in terms of equality with  0. Like iswomninn 14082 but with zero in place of one. (Contributed by Jim Kingdon, 24-Jul-2024.)
Assertion
Ref Expression
iswomni0  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  0 ) )
Distinct variable groups:    A, f, x   
f, V, x

Proof of Theorem iswomni0
Dummy variables  g  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iswomninn 14082 . 2  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. g  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1 ) )
2 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
f `  z )  =  0 )  -> 
( f `  z
)  =  0 )
32oveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
f `  z )  =  0 )  -> 
( 1  -  (
f `  z )
)  =  ( 1  -  0 ) )
4 1m0e1 8991 . . . . . . . . . . 11  |-  ( 1  -  0 )  =  1
53, 4eqtrdi 2219 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
f `  z )  =  0 )  -> 
( 1  -  (
f `  z )
)  =  1 )
6 1ex 7915 . . . . . . . . . . 11  |-  1  e.  _V
76prid2 3690 . . . . . . . . . 10  |-  1  e.  { 0 ,  1 }
85, 7eqeltrdi 2261 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
f `  z )  =  0 )  -> 
( 1  -  (
f `  z )
)  e.  { 0 ,  1 } )
9 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
f `  z )  =  1 )  -> 
( f `  z
)  =  1 )
109oveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
f `  z )  =  1 )  -> 
( 1  -  (
f `  z )
)  =  ( 1  -  1 ) )
11 1m1e0 8947 . . . . . . . . . . 11  |-  ( 1  -  1 )  =  0
1210, 11eqtrdi 2219 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
f `  z )  =  1 )  -> 
( 1  -  (
f `  z )
)  =  0 )
13 c0ex 7914 . . . . . . . . . . 11  |-  0  e.  _V
1413prid1 3689 . . . . . . . . . 10  |-  0  e.  { 0 ,  1 }
1512, 14eqeltrdi 2261 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
f `  z )  =  1 )  -> 
( 1  -  (
f `  z )
)  e.  { 0 ,  1 } )
16 elmapi 6648 . . . . . . . . . . . 12  |-  ( f  e.  ( { 0 ,  1 }  ^m  A )  ->  f : A --> { 0 ,  1 } )
1716ad2antlr 486 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  z  e.  A )  ->  f : A --> { 0 ,  1 } )
18 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  z  e.  A )  ->  z  e.  A )
1917, 18ffvelrnd 5632 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  z  e.  A )  ->  (
f `  z )  e.  { 0 ,  1 } )
20 elpri 3606 . . . . . . . . . 10  |-  ( ( f `  z )  e.  { 0 ,  1 }  ->  (
( f `  z
)  =  0  \/  ( f `  z
)  =  1 ) )
2119, 20syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  z  e.  A )  ->  (
( f `  z
)  =  0  \/  ( f `  z
)  =  1 ) )
228, 15, 21mpjaodan 793 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  z  e.  A )  ->  (
1  -  ( f `
 z ) )  e.  { 0 ,  1 } )
2322fmpttd 5651 . . . . . . 7  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( z  e.  A  |->  ( 1  -  ( f `  z
) ) ) : A --> { 0 ,  1 } )
24 0nn0 9150 . . . . . . . . . 10  |-  0  e.  NN0
25 1nn0 9151 . . . . . . . . . 10  |-  1  e.  NN0
26 prexg 4196 . . . . . . . . . 10  |-  ( ( 0  e.  NN0  /\  1  e.  NN0 )  ->  { 0 ,  1 }  e.  _V )
2724, 25, 26mp2an 424 . . . . . . . . 9  |-  { 0 ,  1 }  e.  _V
2827a1i 9 . . . . . . . 8  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  { 0 ,  1 }  e.  _V )
29 simpl 108 . . . . . . . 8  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  A  e.  V
)
3028, 29elmapd 6640 . . . . . . 7  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( ( z  e.  A  |->  ( 1  -  ( f `  z ) ) )  e.  ( { 0 ,  1 }  ^m  A )  <->  ( z  e.  A  |->  ( 1  -  ( f `  z ) ) ) : A --> { 0 ,  1 } ) )
3123, 30mpbird 166 . . . . . 6  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( z  e.  A  |->  ( 1  -  ( f `  z
) ) )  e.  ( { 0 ,  1 }  ^m  A
) )
32 fveq1 5495 . . . . . . . . . 10  |-  ( g  =  ( z  e.  A  |->  ( 1  -  ( f `  z
) ) )  -> 
( g `  x
)  =  ( ( z  e.  A  |->  ( 1  -  ( f `
 z ) ) ) `  x ) )
3332eqeq1d 2179 . . . . . . . . 9  |-  ( g  =  ( z  e.  A  |->  ( 1  -  ( f `  z
) ) )  -> 
( ( g `  x )  =  1  <-> 
( ( z  e.  A  |->  ( 1  -  ( f `  z
) ) ) `  x )  =  1 ) )
3433ralbidv 2470 . . . . . . . 8  |-  ( g  =  ( z  e.  A  |->  ( 1  -  ( f `  z
) ) )  -> 
( A. x  e.  A  ( g `  x )  =  1  <->  A. x  e.  A  ( ( z  e.  A  |->  ( 1  -  ( f `  z
) ) ) `  x )  =  1 ) )
3534dcbid 833 . . . . . . 7  |-  ( g  =  ( z  e.  A  |->  ( 1  -  ( f `  z
) ) )  -> 
(DECID  A. x  e.  A  ( g `  x
)  =  1  <-> DECID  A. x  e.  A  ( (
z  e.  A  |->  ( 1  -  ( f `
 z ) ) ) `  x )  =  1 ) )
3635rspcv 2830 . . . . . 6  |-  ( ( z  e.  A  |->  ( 1  -  ( f `
 z ) ) )  e.  ( { 0 ,  1 }  ^m  A )  -> 
( A. g  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1  -> DECID  A. x  e.  A  ( (
z  e.  A  |->  ( 1  -  ( f `
 z ) ) ) `  x )  =  1 ) )
3731, 36syl 14 . . . . 5  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( A. g  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1  -> DECID  A. x  e.  A  ( (
z  e.  A  |->  ( 1  -  ( f `
 z ) ) ) `  x )  =  1 ) )
38 eqid 2170 . . . . . . . . . . 11  |-  ( z  e.  A  |->  ( 1  -  ( f `  z ) ) )  =  ( z  e.  A  |->  ( 1  -  ( f `  z
) ) )
39 fveq2 5496 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
f `  z )  =  ( f `  x ) )
4039oveq2d 5869 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
1  -  ( f `
 z ) )  =  ( 1  -  ( f `  x
) ) )
41 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  x  e.  A )
4222ralrimiva 2543 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  A. z  e.  A  ( 1  -  (
f `  z )
)  e.  { 0 ,  1 } )
4340eleq1d 2239 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( 1  -  (
f `  z )
)  e.  { 0 ,  1 }  <->  ( 1  -  ( f `  x ) )  e. 
{ 0 ,  1 } ) )
4443cbvralv 2696 . . . . . . . . . . . . 13  |-  ( A. z  e.  A  (
1  -  ( f `
 z ) )  e.  { 0 ,  1 }  <->  A. x  e.  A  ( 1  -  ( f `  x ) )  e. 
{ 0 ,  1 } )
4542, 44sylib 121 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  A. x  e.  A  ( 1  -  (
f `  x )
)  e.  { 0 ,  1 } )
4645r19.21bi 2558 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
1  -  ( f `
 x ) )  e.  { 0 ,  1 } )
4738, 40, 41, 46fvmptd3 5589 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( z  e.  A  |->  ( 1  -  (
f `  z )
) ) `  x
)  =  ( 1  -  ( f `  x ) ) )
4847eqeq1d 2179 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1  -  ( f `  z
) ) ) `  x )  =  1  <-> 
( 1  -  (
f `  x )
)  =  1 ) )
49 1cnd 7936 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  1  e.  CC )
50 0z 9223 . . . . . . . . . . . . 13  |-  0  e.  ZZ
51 1z 9238 . . . . . . . . . . . . 13  |-  1  e.  ZZ
52 prssi 3738 . . . . . . . . . . . . 13  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ )  ->  { 0 ,  1 }  C_  ZZ )
5350, 51, 52mp2an 424 . . . . . . . . . . . 12  |-  { 0 ,  1 }  C_  ZZ
5416adantl 275 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  f : A --> { 0 ,  1 } )
5554ffvelrnda 5631 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
f `  x )  e.  { 0 ,  1 } )
5653, 55sselid 3145 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
f `  x )  e.  ZZ )
5756zcnd 9335 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
f `  x )  e.  CC )
58 subsub23 8124 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( f `  x
)  e.  CC  /\  1  e.  CC )  ->  ( ( 1  -  ( f `  x
) )  =  1  <-> 
( 1  -  1 )  =  ( f `
 x ) ) )
5949, 57, 49, 58syl3anc 1233 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( 1  -  (
f `  x )
)  =  1  <->  (
1  -  1 )  =  ( f `  x ) ) )
6048, 59bitrd 187 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1  -  ( f `  z
) ) ) `  x )  =  1  <-> 
( 1  -  1 )  =  ( f `
 x ) ) )
6111eqeq1i 2178 . . . . . . . . 9  |-  ( ( 1  -  1 )  =  ( f `  x )  <->  0  =  ( f `  x
) )
62 eqcom 2172 . . . . . . . . 9  |-  ( 0  =  ( f `  x )  <->  ( f `  x )  =  0 )
6361, 62bitri 183 . . . . . . . 8  |-  ( ( 1  -  1 )  =  ( f `  x )  <->  ( f `  x )  =  0 )
6460, 63bitrdi 195 . . . . . . 7  |-  ( ( ( A  e.  V  /\  f  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1  -  ( f `  z
) ) ) `  x )  =  1  <-> 
( f `  x
)  =  0 ) )
6564ralbidva 2466 . . . . . 6  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( A. x  e.  A  ( (
z  e.  A  |->  ( 1  -  ( f `
 z ) ) ) `  x )  =  1  <->  A. x  e.  A  ( f `  x )  =  0 ) )
6665dcbid 833 . . . . 5  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  (DECID 
A. x  e.  A  ( ( z  e.  A  |->  ( 1  -  ( f `  z
) ) ) `  x )  =  1  <-> DECID  A. x  e.  A  (
f `  x )  =  0 ) )
6737, 66sylibd 148 . . . 4  |-  ( ( A  e.  V  /\  f  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( A. g  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1  -> DECID  A. x  e.  A  ( f `  x )  =  0 ) )
6867ralrimdva 2550 . . 3  |-  ( A  e.  V  ->  ( A. g  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1  ->  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  0 ) )
69 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
g `  z )  =  0 )  -> 
( g `  z
)  =  0 )
7069oveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
g `  z )  =  0 )  -> 
( 1  -  (
g `  z )
)  =  ( 1  -  0 ) )
7170, 4eqtrdi 2219 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
g `  z )  =  0 )  -> 
( 1  -  (
g `  z )
)  =  1 )
7271, 7eqeltrdi 2261 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
g `  z )  =  0 )  -> 
( 1  -  (
g `  z )
)  e.  { 0 ,  1 } )
73 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
g `  z )  =  1 )  -> 
( g `  z
)  =  1 )
7473oveq2d 5869 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
g `  z )  =  1 )  -> 
( 1  -  (
g `  z )
)  =  ( 1  -  1 ) )
7574, 11eqtrdi 2219 . . . . . . . . . 10  |-  ( ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
g `  z )  =  1 )  -> 
( 1  -  (
g `  z )
)  =  0 )
7675, 14eqeltrdi 2261 . . . . . . . . 9  |-  ( ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A
) )  /\  z  e.  A )  /\  (
g `  z )  =  1 )  -> 
( 1  -  (
g `  z )
)  e.  { 0 ,  1 } )
77 elmapi 6648 . . . . . . . . . . . 12  |-  ( g  e.  ( { 0 ,  1 }  ^m  A )  ->  g : A --> { 0 ,  1 } )
7877adantl 275 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  g : A --> { 0 ,  1 } )
7978ffvelrnda 5631 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  z  e.  A )  ->  (
g `  z )  e.  { 0 ,  1 } )
80 elpri 3606 . . . . . . . . . 10  |-  ( ( g `  z )  e.  { 0 ,  1 }  ->  (
( g `  z
)  =  0  \/  ( g `  z
)  =  1 ) )
8179, 80syl 14 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  z  e.  A )  ->  (
( g `  z
)  =  0  \/  ( g `  z
)  =  1 ) )
8272, 76, 81mpjaodan 793 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  z  e.  A )  ->  (
1  -  ( g `
 z ) )  e.  { 0 ,  1 } )
8382fmpttd 5651 . . . . . . 7  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( z  e.  A  |->  ( 1  -  ( g `  z
) ) ) : A --> { 0 ,  1 } )
8427a1i 9 . . . . . . . 8  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  { 0 ,  1 }  e.  _V )
85 simpl 108 . . . . . . . 8  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  A  e.  V
)
8684, 85elmapd 6640 . . . . . . 7  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( ( z  e.  A  |->  ( 1  -  ( g `  z ) ) )  e.  ( { 0 ,  1 }  ^m  A )  <->  ( z  e.  A  |->  ( 1  -  ( g `  z ) ) ) : A --> { 0 ,  1 } ) )
8783, 86mpbird 166 . . . . . 6  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( z  e.  A  |->  ( 1  -  ( g `  z
) ) )  e.  ( { 0 ,  1 }  ^m  A
) )
88 fveq1 5495 . . . . . . . . . 10  |-  ( f  =  ( z  e.  A  |->  ( 1  -  ( g `  z
) ) )  -> 
( f `  x
)  =  ( ( z  e.  A  |->  ( 1  -  ( g `
 z ) ) ) `  x ) )
8988eqeq1d 2179 . . . . . . . . 9  |-  ( f  =  ( z  e.  A  |->  ( 1  -  ( g `  z
) ) )  -> 
( ( f `  x )  =  0  <-> 
( ( z  e.  A  |->  ( 1  -  ( g `  z
) ) ) `  x )  =  0 ) )
9089ralbidv 2470 . . . . . . . 8  |-  ( f  =  ( z  e.  A  |->  ( 1  -  ( g `  z
) ) )  -> 
( A. x  e.  A  ( f `  x )  =  0  <->  A. x  e.  A  ( ( z  e.  A  |->  ( 1  -  ( g `  z
) ) ) `  x )  =  0 ) )
9190dcbid 833 . . . . . . 7  |-  ( f  =  ( z  e.  A  |->  ( 1  -  ( g `  z
) ) )  -> 
(DECID  A. x  e.  A  ( f `  x
)  =  0  <-> DECID  A. x  e.  A  ( (
z  e.  A  |->  ( 1  -  ( g `
 z ) ) ) `  x )  =  0 ) )
9291rspcv 2830 . . . . . 6  |-  ( ( z  e.  A  |->  ( 1  -  ( g `
 z ) ) )  e.  ( { 0 ,  1 }  ^m  A )  -> 
( A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  0  -> DECID  A. x  e.  A  ( (
z  e.  A  |->  ( 1  -  ( g `
 z ) ) ) `  x )  =  0 ) )
9387, 92syl 14 . . . . 5  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  0  -> DECID  A. x  e.  A  ( (
z  e.  A  |->  ( 1  -  ( g `
 z ) ) ) `  x )  =  0 ) )
94 eqid 2170 . . . . . . . . . . 11  |-  ( z  e.  A  |->  ( 1  -  ( g `  z ) ) )  =  ( z  e.  A  |->  ( 1  -  ( g `  z
) ) )
95 fveq2 5496 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
g `  z )  =  ( g `  x ) )
9695oveq2d 5869 . . . . . . . . . . 11  |-  ( z  =  x  ->  (
1  -  ( g `
 z ) )  =  ( 1  -  ( g `  x
) ) )
97 simpr 109 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  x  e.  A )
9882ralrimiva 2543 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  A. z  e.  A  ( 1  -  (
g `  z )
)  e.  { 0 ,  1 } )
9996eleq1d 2239 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  (
( 1  -  (
g `  z )
)  e.  { 0 ,  1 }  <->  ( 1  -  ( g `  x ) )  e. 
{ 0 ,  1 } ) )
10099cbvralv 2696 . . . . . . . . . . . . 13  |-  ( A. z  e.  A  (
1  -  ( g `
 z ) )  e.  { 0 ,  1 }  <->  A. x  e.  A  ( 1  -  ( g `  x ) )  e. 
{ 0 ,  1 } )
10198, 100sylib 121 . . . . . . . . . . . 12  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  A. x  e.  A  ( 1  -  (
g `  x )
)  e.  { 0 ,  1 } )
102101r19.21bi 2558 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
1  -  ( g `
 x ) )  e.  { 0 ,  1 } )
10394, 96, 97, 102fvmptd3 5589 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( z  e.  A  |->  ( 1  -  (
g `  z )
) ) `  x
)  =  ( 1  -  ( g `  x ) ) )
104103eqeq1d 2179 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1  -  ( g `  z
) ) ) `  x )  =  0  <-> 
( 1  -  (
g `  x )
)  =  0 ) )
105 1cnd 7936 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  1  e.  CC )
10678ffvelrnda 5631 . . . . . . . . . . . 12  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
g `  x )  e.  { 0 ,  1 } )
10753, 106sselid 3145 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
g `  x )  e.  ZZ )
108107zcnd 9335 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
g `  x )  e.  CC )
109 0cnd 7913 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  0  e.  CC )
110 subsub23 8124 . . . . . . . . . 10  |-  ( ( 1  e.  CC  /\  ( g `  x
)  e.  CC  /\  0  e.  CC )  ->  ( ( 1  -  ( g `  x
) )  =  0  <-> 
( 1  -  0 )  =  ( g `
 x ) ) )
111105, 108, 109, 110syl3anc 1233 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( 1  -  (
g `  x )
)  =  0  <->  (
1  -  0 )  =  ( g `  x ) ) )
112104, 111bitrd 187 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1  -  ( g `  z
) ) ) `  x )  =  0  <-> 
( 1  -  0 )  =  ( g `
 x ) ) )
1134eqeq1i 2178 . . . . . . . . 9  |-  ( ( 1  -  0 )  =  ( g `  x )  <->  1  =  ( g `  x
) )
114 eqcom 2172 . . . . . . . . 9  |-  ( 1  =  ( g `  x )  <->  ( g `  x )  =  1 )
115113, 114bitri 183 . . . . . . . 8  |-  ( ( 1  -  0 )  =  ( g `  x )  <->  ( g `  x )  =  1 )
116112, 115bitrdi 195 . . . . . . 7  |-  ( ( ( A  e.  V  /\  g  e.  ( { 0 ,  1 }  ^m  A ) )  /\  x  e.  A )  ->  (
( ( z  e.  A  |->  ( 1  -  ( g `  z
) ) ) `  x )  =  0  <-> 
( g `  x
)  =  1 ) )
117116ralbidva 2466 . . . . . 6  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( A. x  e.  A  ( (
z  e.  A  |->  ( 1  -  ( g `
 z ) ) ) `  x )  =  0  <->  A. x  e.  A  ( g `  x )  =  1 ) )
118117dcbid 833 . . . . 5  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  (DECID 
A. x  e.  A  ( ( z  e.  A  |->  ( 1  -  ( g `  z
) ) ) `  x )  =  0  <-> DECID  A. x  e.  A  (
g `  x )  =  1 ) )
11993, 118sylibd 148 . . . 4  |-  ( ( A  e.  V  /\  g  e.  ( {
0 ,  1 }  ^m  A ) )  ->  ( A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  0  -> DECID  A. x  e.  A  ( g `  x )  =  1 ) )
120119ralrimdva 2550 . . 3  |-  ( A  e.  V  ->  ( A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  0  ->  A. g  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( g `  x
)  =  1 ) )
12168, 120impbid 128 . 2  |-  ( A  e.  V  ->  ( A. g  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
g `  x )  =  1  <->  A. f  e.  ( { 0 ,  1 }  ^m  A
)DECID  A. x  e.  A  ( f `  x
)  =  0 ) )
1221, 121bitrd 187 1  |-  ( A  e.  V  ->  ( A  e. WOmni  <->  A. f  e.  ( { 0 ,  1 }  ^m  A )DECID  A. x  e.  A  (
f `  x )  =  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 703  DECID wdc 829    = wceq 1348    e. wcel 2141   A.wral 2448   _Vcvv 2730    C_ wss 3121   {cpr 3584    |-> cmpt 4050   -->wf 5194   ` cfv 5198  (class class class)co 5853    ^m cmap 6626  WOmnicwomni 7139   CCcc 7772   0cc0 7774   1c1 7775    - cmin 8090   NN0cn0 9135   ZZcz 9212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-recs 6284  df-frec 6370  df-1o 6395  df-2o 6396  df-map 6628  df-womni 7140  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488
This theorem is referenced by:  nconstwlpo  14097
  Copyright terms: Public domain W3C validator