ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneg Unicode version

Theorem eqneg 8759
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
eqneg  |-  ( A  e.  CC  ->  ( A  =  -u A  <->  A  = 
0 ) )

Proof of Theorem eqneg
StepHypRef Expression
1 1p1times 8160 . . 3  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )
2 ax-1cn 7972 . . . . . 6  |-  1  e.  CC
32, 2addcli 8030 . . . . 5  |-  ( 1  +  1 )  e.  CC
43mul01i 8417 . . . 4  |-  ( ( 1  +  1 )  x.  0 )  =  0
5 negid 8273 . . . 4  |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
64, 5eqtr4id 2248 . . 3  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  0 )  =  ( A  +  -u A ) )
71, 6eqeq12d 2211 . 2  |-  ( A  e.  CC  ->  (
( ( 1  +  1 )  x.  A
)  =  ( ( 1  +  1 )  x.  0 )  <->  ( A  +  A )  =  ( A  +  -u A
) ) )
8 id 19 . . 3  |-  ( A  e.  CC  ->  A  e.  CC )
9 0cnd 8019 . . 3  |-  ( A  e.  CC  ->  0  e.  CC )
103a1i 9 . . 3  |-  ( A  e.  CC  ->  (
1  +  1 )  e.  CC )
11 1re 8025 . . . . . 6  |-  1  e.  RR
1211, 11readdcli 8039 . . . . 5  |-  ( 1  +  1 )  e.  RR
13 0lt1 8153 . . . . . 6  |-  0  <  1
1411, 11, 13, 13addgt0ii 8518 . . . . 5  |-  0  <  ( 1  +  1 )
1512, 14gt0ap0ii 8655 . . . 4  |-  ( 1  +  1 ) #  0
1615a1i 9 . . 3  |-  ( A  e.  CC  ->  (
1  +  1 ) #  0 )
178, 9, 10, 16mulcanapd 8688 . 2  |-  ( A  e.  CC  ->  (
( ( 1  +  1 )  x.  A
)  =  ( ( 1  +  1 )  x.  0 )  <->  A  = 
0 ) )
18 negcl 8226 . . 3  |-  ( A  e.  CC  ->  -u A  e.  CC )
198, 8, 18addcand 8210 . 2  |-  ( A  e.  CC  ->  (
( A  +  A
)  =  ( A  +  -u A )  <->  A  =  -u A ) )
207, 17, 193bitr3rd 219 1  |-  ( A  e.  CC  ->  ( A  =  -u A  <->  A  = 
0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   class class class wbr 4033  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884   -ucneg 8198   # cap 8608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-po 4331  df-iso 4332  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609
This theorem is referenced by:  eqnegd  8760  eqnegi  8768
  Copyright terms: Public domain W3C validator