ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqneg Unicode version

Theorem eqneg 8879
Description: A number equal to its negative is zero. (Contributed by NM, 12-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
eqneg  |-  ( A  e.  CC  ->  ( A  =  -u A  <->  A  = 
0 ) )

Proof of Theorem eqneg
StepHypRef Expression
1 1p1times 8280 . . 3  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )
2 ax-1cn 8092 . . . . . 6  |-  1  e.  CC
32, 2addcli 8150 . . . . 5  |-  ( 1  +  1 )  e.  CC
43mul01i 8537 . . . 4  |-  ( ( 1  +  1 )  x.  0 )  =  0
5 negid 8393 . . . 4  |-  ( A  e.  CC  ->  ( A  +  -u A )  =  0 )
64, 5eqtr4id 2281 . . 3  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  0 )  =  ( A  +  -u A ) )
71, 6eqeq12d 2244 . 2  |-  ( A  e.  CC  ->  (
( ( 1  +  1 )  x.  A
)  =  ( ( 1  +  1 )  x.  0 )  <->  ( A  +  A )  =  ( A  +  -u A
) ) )
8 id 19 . . 3  |-  ( A  e.  CC  ->  A  e.  CC )
9 0cnd 8139 . . 3  |-  ( A  e.  CC  ->  0  e.  CC )
103a1i 9 . . 3  |-  ( A  e.  CC  ->  (
1  +  1 )  e.  CC )
11 1re 8145 . . . . . 6  |-  1  e.  RR
1211, 11readdcli 8159 . . . . 5  |-  ( 1  +  1 )  e.  RR
13 0lt1 8273 . . . . . 6  |-  0  <  1
1411, 11, 13, 13addgt0ii 8638 . . . . 5  |-  0  <  ( 1  +  1 )
1512, 14gt0ap0ii 8775 . . . 4  |-  ( 1  +  1 ) #  0
1615a1i 9 . . 3  |-  ( A  e.  CC  ->  (
1  +  1 ) #  0 )
178, 9, 10, 16mulcanapd 8808 . 2  |-  ( A  e.  CC  ->  (
( ( 1  +  1 )  x.  A
)  =  ( ( 1  +  1 )  x.  0 )  <->  A  = 
0 ) )
18 negcl 8346 . . 3  |-  ( A  e.  CC  ->  -u A  e.  CC )
198, 8, 18addcand 8330 . 2  |-  ( A  e.  CC  ->  (
( A  +  A
)  =  ( A  +  -u A )  <->  A  =  -u A ) )
207, 17, 193bitr3rd 219 1  |-  ( A  e.  CC  ->  ( A  =  -u A  <->  A  = 
0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   CCcc 7997   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004   -ucneg 8318   # cap 8728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729
This theorem is referenced by:  eqnegd  8880  eqnegi  8888
  Copyright terms: Public domain W3C validator