ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11 Unicode version

Theorem muladd11 8176
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
muladd11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )

Proof of Theorem muladd11
StepHypRef Expression
1 ax-1cn 7989 . . . 4  |-  1  e.  CC
2 addcl 8021 . . . 4  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
31, 2mpan 424 . . 3  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
4 adddi 8028 . . . 4  |-  ( ( ( 1  +  A
)  e.  CC  /\  1  e.  CC  /\  B  e.  CC )  ->  (
( 1  +  A
)  x.  ( 1  +  B ) )  =  ( ( ( 1  +  A )  x.  1 )  +  ( ( 1  +  A )  x.  B
) ) )
51, 4mp3an2 1336 . . 3  |-  ( ( ( 1  +  A
)  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( ( 1  +  A
)  x.  1 )  +  ( ( 1  +  A )  x.  B ) ) )
63, 5sylan 283 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( ( 1  +  A
)  x.  1 )  +  ( ( 1  +  A )  x.  B ) ) )
73mulridd 8060 . . . 4  |-  ( A  e.  CC  ->  (
( 1  +  A
)  x.  1 )  =  ( 1  +  A ) )
87adantr 276 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  1 )  =  ( 1  +  A ) )
9 adddir 8034 . . . . 5  |-  ( ( 1  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( 1  +  A
)  x.  B )  =  ( ( 1  x.  B )  +  ( A  x.  B
) ) )
101, 9mp3an1 1335 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  B
)  =  ( ( 1  x.  B )  +  ( A  x.  B ) ) )
11 mullid 8041 . . . . . 6  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
1211adantl 277 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  B
)  =  B )
1312oveq1d 5940 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  B )  +  ( A  x.  B ) )  =  ( B  +  ( A  x.  B ) ) )
1410, 13eqtrd 2229 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  B
)  =  ( B  +  ( A  x.  B ) ) )
158, 14oveq12d 5943 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 1  +  A )  x.  1 )  +  ( ( 1  +  A
)  x.  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
166, 15eqtrd 2229 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894   1c1 7897    + caddc 7899    x. cmul 7901
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-mulcl 7994  ax-mulcom 7997  ax-mulass 7999  ax-distr 8000  ax-1rid 8003  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928
This theorem is referenced by:  muladd11r  8199  bernneq  10769
  Copyright terms: Public domain W3C validator