ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11 Unicode version

Theorem muladd11 8031
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
muladd11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )

Proof of Theorem muladd11
StepHypRef Expression
1 ax-1cn 7846 . . . 4  |-  1  e.  CC
2 addcl 7878 . . . 4  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
31, 2mpan 421 . . 3  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
4 adddi 7885 . . . 4  |-  ( ( ( 1  +  A
)  e.  CC  /\  1  e.  CC  /\  B  e.  CC )  ->  (
( 1  +  A
)  x.  ( 1  +  B ) )  =  ( ( ( 1  +  A )  x.  1 )  +  ( ( 1  +  A )  x.  B
) ) )
51, 4mp3an2 1315 . . 3  |-  ( ( ( 1  +  A
)  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( ( 1  +  A
)  x.  1 )  +  ( ( 1  +  A )  x.  B ) ) )
63, 5sylan 281 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( ( 1  +  A
)  x.  1 )  +  ( ( 1  +  A )  x.  B ) ) )
73mulid1d 7916 . . . 4  |-  ( A  e.  CC  ->  (
( 1  +  A
)  x.  1 )  =  ( 1  +  A ) )
87adantr 274 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  1 )  =  ( 1  +  A ) )
9 adddir 7890 . . . . 5  |-  ( ( 1  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( 1  +  A
)  x.  B )  =  ( ( 1  x.  B )  +  ( A  x.  B
) ) )
101, 9mp3an1 1314 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  B
)  =  ( ( 1  x.  B )  +  ( A  x.  B ) ) )
11 mulid2 7897 . . . . . 6  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
1211adantl 275 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  B
)  =  B )
1312oveq1d 5857 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  B )  +  ( A  x.  B ) )  =  ( B  +  ( A  x.  B ) ) )
1410, 13eqtrd 2198 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  B
)  =  ( B  +  ( A  x.  B ) ) )
158, 14oveq12d 5860 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 1  +  A )  x.  1 )  +  ( ( 1  +  A
)  x.  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
166, 15eqtrd 2198 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136  (class class class)co 5842   CCcc 7751   1c1 7754    + caddc 7756    x. cmul 7758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-mulcl 7851  ax-mulcom 7854  ax-mulass 7856  ax-distr 7857  ax-1rid 7860  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  muladd11r  8054  bernneq  10575
  Copyright terms: Public domain W3C validator