Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > muladd11 | Unicode version |
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.) |
Ref | Expression |
---|---|
muladd11 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 7846 | . . . 4 | |
2 | addcl 7878 | . . . 4 | |
3 | 1, 2 | mpan 421 | . . 3 |
4 | adddi 7885 | . . . 4 | |
5 | 1, 4 | mp3an2 1315 | . . 3 |
6 | 3, 5 | sylan 281 | . 2 |
7 | 3 | mulid1d 7916 | . . . 4 |
8 | 7 | adantr 274 | . . 3 |
9 | adddir 7890 | . . . . 5 | |
10 | 1, 9 | mp3an1 1314 | . . . 4 |
11 | mulid2 7897 | . . . . . 6 | |
12 | 11 | adantl 275 | . . . . 5 |
13 | 12 | oveq1d 5857 | . . . 4 |
14 | 10, 13 | eqtrd 2198 | . . 3 |
15 | 8, 14 | oveq12d 5860 | . 2 |
16 | 6, 15 | eqtrd 2198 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 (class class class)co 5842 cc 7751 c1 7754 caddc 7756 cmul 7758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-mulcom 7854 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: muladd11r 8054 bernneq 10575 |
Copyright terms: Public domain | W3C validator |