ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11 Unicode version

Theorem muladd11 8023
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
muladd11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )

Proof of Theorem muladd11
StepHypRef Expression
1 ax-1cn 7838 . . . 4  |-  1  e.  CC
2 addcl 7870 . . . 4  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
31, 2mpan 421 . . 3  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
4 adddi 7877 . . . 4  |-  ( ( ( 1  +  A
)  e.  CC  /\  1  e.  CC  /\  B  e.  CC )  ->  (
( 1  +  A
)  x.  ( 1  +  B ) )  =  ( ( ( 1  +  A )  x.  1 )  +  ( ( 1  +  A )  x.  B
) ) )
51, 4mp3an2 1314 . . 3  |-  ( ( ( 1  +  A
)  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( ( 1  +  A
)  x.  1 )  +  ( ( 1  +  A )  x.  B ) ) )
63, 5sylan 281 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( ( 1  +  A
)  x.  1 )  +  ( ( 1  +  A )  x.  B ) ) )
73mulid1d 7908 . . . 4  |-  ( A  e.  CC  ->  (
( 1  +  A
)  x.  1 )  =  ( 1  +  A ) )
87adantr 274 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  1 )  =  ( 1  +  A ) )
9 adddir 7882 . . . . 5  |-  ( ( 1  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( 1  +  A
)  x.  B )  =  ( ( 1  x.  B )  +  ( A  x.  B
) ) )
101, 9mp3an1 1313 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  B
)  =  ( ( 1  x.  B )  +  ( A  x.  B ) ) )
11 mulid2 7889 . . . . . 6  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
1211adantl 275 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  B
)  =  B )
1312oveq1d 5852 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  B )  +  ( A  x.  B ) )  =  ( B  +  ( A  x.  B ) ) )
1410, 13eqtrd 2197 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  B
)  =  ( B  +  ( A  x.  B ) ) )
158, 14oveq12d 5855 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 1  +  A )  x.  1 )  +  ( ( 1  +  A
)  x.  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
166, 15eqtrd 2197 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135  (class class class)co 5837   CCcc 7743   1c1 7746    + caddc 7748    x. cmul 7750
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146  ax-resscn 7837  ax-1cn 7838  ax-icn 7840  ax-addcl 7841  ax-mulcl 7843  ax-mulcom 7846  ax-mulass 7848  ax-distr 7849  ax-1rid 7852  ax-cnre 7856
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rex 2448  df-v 2724  df-un 3116  df-in 3118  df-ss 3125  df-sn 3577  df-pr 3578  df-op 3580  df-uni 3785  df-br 3978  df-iota 5148  df-fv 5191  df-ov 5840
This theorem is referenced by:  muladd11r  8046  bernneq  10565
  Copyright terms: Public domain W3C validator