ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  muladd11 Unicode version

Theorem muladd11 7919
Description: A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
muladd11  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )

Proof of Theorem muladd11
StepHypRef Expression
1 ax-1cn 7737 . . . 4  |-  1  e.  CC
2 addcl 7769 . . . 4  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
31, 2mpan 421 . . 3  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
4 adddi 7776 . . . 4  |-  ( ( ( 1  +  A
)  e.  CC  /\  1  e.  CC  /\  B  e.  CC )  ->  (
( 1  +  A
)  x.  ( 1  +  B ) )  =  ( ( ( 1  +  A )  x.  1 )  +  ( ( 1  +  A )  x.  B
) ) )
51, 4mp3an2 1304 . . 3  |-  ( ( ( 1  +  A
)  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( ( 1  +  A
)  x.  1 )  +  ( ( 1  +  A )  x.  B ) ) )
63, 5sylan 281 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( ( 1  +  A
)  x.  1 )  +  ( ( 1  +  A )  x.  B ) ) )
73mulid1d 7807 . . . 4  |-  ( A  e.  CC  ->  (
( 1  +  A
)  x.  1 )  =  ( 1  +  A ) )
87adantr 274 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  1 )  =  ( 1  +  A ) )
9 adddir 7781 . . . . 5  |-  ( ( 1  e.  CC  /\  A  e.  CC  /\  B  e.  CC )  ->  (
( 1  +  A
)  x.  B )  =  ( ( 1  x.  B )  +  ( A  x.  B
) ) )
101, 9mp3an1 1303 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  B
)  =  ( ( 1  x.  B )  +  ( A  x.  B ) ) )
11 mulid2 7788 . . . . . 6  |-  ( B  e.  CC  ->  (
1  x.  B )  =  B )
1211adantl 275 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 1  x.  B
)  =  B )
1312oveq1d 5797 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  x.  B )  +  ( A  x.  B ) )  =  ( B  +  ( A  x.  B ) ) )
1410, 13eqtrd 2173 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  B
)  =  ( B  +  ( A  x.  B ) ) )
158, 14oveq12d 5800 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( 1  +  A )  x.  1 )  +  ( ( 1  +  A
)  x.  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
166, 15eqtrd 2173 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( 1  +  A )  x.  (
1  +  B ) )  =  ( ( 1  +  A )  +  ( B  +  ( A  x.  B
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1332    e. wcel 1481  (class class class)co 5782   CCcc 7642   1c1 7645    + caddc 7647    x. cmul 7649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-resscn 7736  ax-1cn 7737  ax-icn 7739  ax-addcl 7740  ax-mulcl 7742  ax-mulcom 7745  ax-mulass 7747  ax-distr 7748  ax-1rid 7751  ax-cnre 7755
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-iota 5096  df-fv 5139  df-ov 5785
This theorem is referenced by:  muladd11r  7942  bernneq  10443
  Copyright terms: Public domain W3C validator