ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2times Unicode version

Theorem 2times 9238
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
Assertion
Ref Expression
2times  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )

Proof of Theorem 2times
StepHypRef Expression
1 df-2 9169 . . 3  |-  2  =  ( 1  +  1 )
21oveq1i 6011 . 2  |-  ( 2  x.  A )  =  ( ( 1  +  1 )  x.  A
)
3 1p1times 8280 . 2  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )
42, 3eqtrid 2274 1  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997   1c1 8000    + caddc 8002    x. cmul 8004   2c2 9161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-resscn 8091  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-mulcl 8097  ax-mulcom 8100  ax-mulass 8102  ax-distr 8103  ax-1rid 8106  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-2 9169
This theorem is referenced by:  times2  9239  2timesi  9240  2txmxeqx  9242  2halves  9340  halfaddsub  9345  avglt2  9351  2timesd  9354  expubnd  10818  subsq2  10869  sinmul  12255  sin2t  12260  cos2t  12261  pythagtriplem4  12791  pythagtriplem14  12800  pythagtriplem16  12802
  Copyright terms: Public domain W3C validator