ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2times Unicode version

Theorem 2times 9135
Description: Two times a number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.) (Proof shortened by AV, 26-Feb-2020.)
Assertion
Ref Expression
2times  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )

Proof of Theorem 2times
StepHypRef Expression
1 df-2 9066 . . 3  |-  2  =  ( 1  +  1 )
21oveq1i 5935 . 2  |-  ( 2  x.  A )  =  ( ( 1  +  1 )  x.  A
)
3 1p1times 8177 . 2  |-  ( A  e.  CC  ->  (
( 1  +  1 )  x.  A )  =  ( A  +  A ) )
42, 3eqtrid 2241 1  |-  ( A  e.  CC  ->  (
2  x.  A )  =  ( A  +  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894   1c1 7897    + caddc 7899    x. cmul 7901   2c2 9058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-resscn 7988  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-mulcl 7994  ax-mulcom 7997  ax-mulass 7999  ax-distr 8000  ax-1rid 8003  ax-cnre 8007
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-iota 5220  df-fv 5267  df-ov 5928  df-2 9066
This theorem is referenced by:  times2  9136  2timesi  9137  2txmxeqx  9139  2halves  9237  halfaddsub  9242  avglt2  9248  2timesd  9251  expubnd  10705  subsq2  10756  sinmul  11926  sin2t  11931  cos2t  11932  pythagtriplem4  12462  pythagtriplem14  12471  pythagtriplem16  12473
  Copyright terms: Public domain W3C validator