| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndrn | GIF version | ||
| Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| 2ndrn | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
| 2 | 1st2nd 6279 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 3 | 2, 1 | eqeltrrd 2284 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) |
| 4 | 1stexg 6265 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (1st ‘𝐴) ∈ V) | |
| 5 | 2ndexg 6266 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (2nd ‘𝐴) ∈ V) | |
| 6 | 4, 5 | jca 306 | . . 3 ⊢ (𝐴 ∈ 𝑅 → ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V)) |
| 7 | opelrng 4918 | . . . 4 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | |
| 8 | 7 | 3expa 1206 | . . 3 ⊢ ((((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| 9 | 6, 8 | sylan 283 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| 10 | 1, 3, 9 | syl2anc 411 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 Vcvv 2773 〈cop 3640 ran crn 4683 Rel wrel 4687 ‘cfv 5279 1st c1st 6236 2nd c2nd 6237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-fo 5285 df-fv 5287 df-1st 6238 df-2nd 6239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |