ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndrn GIF version

Theorem 2ndrn 6250
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
2ndrn ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)

Proof of Theorem 2ndrn
StepHypRef Expression
1 simpr 110 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴𝑅)
2 1st2nd 6248 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
32, 1eqeltrrd 2274 . 2 ((Rel 𝑅𝐴𝑅) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅)
4 1stexg 6234 . . . 4 (𝐴𝑅 → (1st𝐴) ∈ V)
5 2ndexg 6235 . . . 4 (𝐴𝑅 → (2nd𝐴) ∈ V)
64, 5jca 306 . . 3 (𝐴𝑅 → ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V))
7 opelrng 4899 . . . 4 (((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V ∧ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅) → (2nd𝐴) ∈ ran 𝑅)
873expa 1205 . . 3 ((((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V) ∧ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅) → (2nd𝐴) ∈ ran 𝑅)
96, 8sylan 283 . 2 ((𝐴𝑅 ∧ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅) → (2nd𝐴) ∈ ran 𝑅)
101, 3, 9syl2anc 411 1 ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167  Vcvv 2763  cop 3626  ran crn 4665  Rel wrel 4669  cfv 5259  1st c1st 6205  2nd c2nd 6206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-1st 6207  df-2nd 6208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator