ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndrn GIF version

Theorem 2ndrn 6186
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
2ndrn ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)

Proof of Theorem 2ndrn
StepHypRef Expression
1 simpr 110 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴𝑅)
2 1st2nd 6184 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 = ⟨(1st𝐴), (2nd𝐴)⟩)
32, 1eqeltrrd 2255 . 2 ((Rel 𝑅𝐴𝑅) → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅)
4 1stexg 6170 . . . 4 (𝐴𝑅 → (1st𝐴) ∈ V)
5 2ndexg 6171 . . . 4 (𝐴𝑅 → (2nd𝐴) ∈ V)
64, 5jca 306 . . 3 (𝐴𝑅 → ((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V))
7 opelrng 4861 . . . 4 (((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V ∧ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅) → (2nd𝐴) ∈ ran 𝑅)
873expa 1203 . . 3 ((((1st𝐴) ∈ V ∧ (2nd𝐴) ∈ V) ∧ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅) → (2nd𝐴) ∈ ran 𝑅)
96, 8sylan 283 . 2 ((𝐴𝑅 ∧ ⟨(1st𝐴), (2nd𝐴)⟩ ∈ 𝑅) → (2nd𝐴) ∈ ran 𝑅)
101, 3, 9syl2anc 411 1 ((Rel 𝑅𝐴𝑅) → (2nd𝐴) ∈ ran 𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  Vcvv 2739  cop 3597  ran crn 4629  Rel wrel 4633  cfv 5218  1st c1st 6141  2nd c2nd 6142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fo 5224  df-fv 5226  df-1st 6143  df-2nd 6144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator