Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ndrn | GIF version |
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
2ndrn | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
2 | 1st2nd 6149 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
3 | 2, 1 | eqeltrrd 2244 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) |
4 | 1stexg 6135 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (1st ‘𝐴) ∈ V) | |
5 | 2ndexg 6136 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (2nd ‘𝐴) ∈ V) | |
6 | 4, 5 | jca 304 | . . 3 ⊢ (𝐴 ∈ 𝑅 → ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V)) |
7 | opelrng 4836 | . . . 4 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | |
8 | 7 | 3expa 1193 | . . 3 ⊢ ((((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
9 | 6, 8 | sylan 281 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
10 | 1, 3, 9 | syl2anc 409 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 Vcvv 2726 〈cop 3579 ran crn 4605 Rel wrel 4609 ‘cfv 5188 1st c1st 6106 2nd c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |