![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2ndrn | GIF version |
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
2ndrn | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
2 | 1st2nd 6184 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 = ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩) | |
3 | 2, 1 | eqeltrrd 2255 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ 𝑅) |
4 | 1stexg 6170 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (1st ‘𝐴) ∈ V) | |
5 | 2ndexg 6171 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (2nd ‘𝐴) ∈ V) | |
6 | 4, 5 | jca 306 | . . 3 ⊢ (𝐴 ∈ 𝑅 → ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V)) |
7 | opelrng 4861 | . . . 4 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V ∧ ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | |
8 | 7 | 3expa 1203 | . . 3 ⊢ ((((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) ∧ ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
9 | 6, 8 | sylan 283 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ ⟨(1st ‘𝐴), (2nd ‘𝐴)⟩ ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
10 | 1, 3, 9 | syl2anc 411 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2148 Vcvv 2739 ⟨cop 3597 ran crn 4629 Rel wrel 4633 ‘cfv 5218 1st c1st 6141 2nd c2nd 6142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 df-1st 6143 df-2nd 6144 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |