| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndrn | GIF version | ||
| Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| 2ndrn | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
| 2 | 1st2nd 6317 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
| 3 | 2, 1 | eqeltrrd 2307 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) |
| 4 | 1stexg 6303 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (1st ‘𝐴) ∈ V) | |
| 5 | 2ndexg 6304 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (2nd ‘𝐴) ∈ V) | |
| 6 | 4, 5 | jca 306 | . . 3 ⊢ (𝐴 ∈ 𝑅 → ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V)) |
| 7 | opelrng 4952 | . . . 4 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | |
| 8 | 7 | 3expa 1227 | . . 3 ⊢ ((((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| 9 | 6, 8 | sylan 283 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| 10 | 1, 3, 9 | syl2anc 411 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ran crn 4717 Rel wrel 4721 ‘cfv 5314 1st c1st 6274 2nd c2nd 6275 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-fo 5320 df-fv 5322 df-1st 6276 df-2nd 6277 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |