Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2ndrn | GIF version |
Description: The second ordered pair component of a member of a relation belongs to the range of the relation. (Contributed by NM, 17-Sep-2006.) |
Ref | Expression |
---|---|
2ndrn | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 109 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ 𝑅) | |
2 | 1st2nd 6160 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 = 〈(1st ‘𝐴), (2nd ‘𝐴)〉) | |
3 | 2, 1 | eqeltrrd 2248 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) |
4 | 1stexg 6146 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (1st ‘𝐴) ∈ V) | |
5 | 2ndexg 6147 | . . . 4 ⊢ (𝐴 ∈ 𝑅 → (2nd ‘𝐴) ∈ V) | |
6 | 4, 5 | jca 304 | . . 3 ⊢ (𝐴 ∈ 𝑅 → ((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V)) |
7 | opelrng 4843 | . . . 4 ⊢ (((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) | |
8 | 7 | 3expa 1198 | . . 3 ⊢ ((((1st ‘𝐴) ∈ V ∧ (2nd ‘𝐴) ∈ V) ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
9 | 6, 8 | sylan 281 | . 2 ⊢ ((𝐴 ∈ 𝑅 ∧ 〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
10 | 1, 3, 9 | syl2anc 409 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (2nd ‘𝐴) ∈ ran 𝑅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 Vcvv 2730 〈cop 3586 ran crn 4612 Rel wrel 4616 ‘cfv 5198 1st c1st 6117 2nd c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |