| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndexg | Unicode version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 2ndexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | fo2nd 6302 |
. . . 4
| |
| 3 | fofn 5549 |
. . . 4
| |
| 4 | 2, 3 | ax-mp 5 |
. . 3
|
| 5 | funfvex 5643 |
. . . 4
| |
| 6 | 5 | funfni 5422 |
. . 3
|
| 7 | 4, 6 | mpan 424 |
. 2
|
| 8 | 1, 7 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fo 5323 df-fv 5325 df-2nd 6285 |
| This theorem is referenced by: elxp7 6314 xpopth 6320 eqop 6321 op1steq 6323 2nd1st 6324 2ndrn 6327 dfoprab3 6335 elopabi 6339 mpofvex 6349 dfmpo 6367 cnvf1olem 6368 cnvoprab 6378 f1od2 6379 xpmapenlem 7006 cc2lem 7448 cnref1o 9842 fsumcnv 11943 fprodcnv 12131 qredeu 12614 qdenval 12703 xpsff1o 13377 txbas 14926 txdis 14945 iedgvalg 15812 iedgex 15814 edgvalg 15854 |
| Copyright terms: Public domain | W3C validator |