| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 2ndexg | Unicode version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| 2ndexg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elex 2774 | 
. 2
 | |
| 2 | fo2nd 6216 | 
. . . 4
 | |
| 3 | fofn 5482 | 
. . . 4
 | |
| 4 | 2, 3 | ax-mp 5 | 
. . 3
 | 
| 5 | funfvex 5575 | 
. . . 4
 | |
| 6 | 5 | funfni 5358 | 
. . 3
 | 
| 7 | 4, 6 | mpan 424 | 
. 2
 | 
| 8 | 1, 7 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 df-2nd 6199 | 
| This theorem is referenced by: elxp7 6228 xpopth 6234 eqop 6235 op1steq 6237 2nd1st 6238 2ndrn 6241 dfoprab3 6249 elopabi 6253 mpofvex 6263 dfmpo 6281 cnvf1olem 6282 cnvoprab 6292 f1od2 6293 xpmapenlem 6910 cc2lem 7333 cnref1o 9725 fsumcnv 11602 fprodcnv 11790 qredeu 12265 qdenval 12354 xpsff1o 12992 txbas 14494 txdis 14513 | 
| Copyright terms: Public domain | W3C validator |