ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2ndexg Unicode version

Theorem 2ndexg 6226
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
2ndexg  |-  ( A  e.  V  ->  ( 2nd `  A )  e. 
_V )

Proof of Theorem 2ndexg
StepHypRef Expression
1 elex 2774 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 fo2nd 6216 . . . 4  |-  2nd : _V -onto-> _V
3 fofn 5482 . . . 4  |-  ( 2nd
: _V -onto-> _V  ->  2nd 
Fn  _V )
42, 3ax-mp 5 . . 3  |-  2nd  Fn  _V
5 funfvex 5575 . . . 4  |-  ( ( Fun  2nd  /\  A  e. 
dom  2nd )  ->  ( 2nd `  A )  e. 
_V )
65funfni 5358 . . 3  |-  ( ( 2nd  Fn  _V  /\  A  e.  _V )  ->  ( 2nd `  A
)  e.  _V )
74, 6mpan 424 . 2  |-  ( A  e.  _V  ->  ( 2nd `  A )  e. 
_V )
81, 7syl 14 1  |-  ( A  e.  V  ->  ( 2nd `  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   _Vcvv 2763    Fn wfn 5253   -onto->wfo 5256   ` cfv 5258   2ndc2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fo 5264  df-fv 5266  df-2nd 6199
This theorem is referenced by:  elxp7  6228  xpopth  6234  eqop  6235  op1steq  6237  2nd1st  6238  2ndrn  6241  dfoprab3  6249  elopabi  6253  mpofvex  6263  dfmpo  6281  cnvf1olem  6282  cnvoprab  6292  f1od2  6293  xpmapenlem  6910  cc2lem  7333  cnref1o  9725  fsumcnv  11602  fprodcnv  11790  qredeu  12265  qdenval  12354  xpsff1o  12992  txbas  14494  txdis  14513
  Copyright terms: Public domain W3C validator