| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2ndexg | Unicode version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 2ndexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2782 |
. 2
| |
| 2 | fo2nd 6243 |
. . . 4
| |
| 3 | fofn 5499 |
. . . 4
| |
| 4 | 2, 3 | ax-mp 5 |
. . 3
|
| 5 | funfvex 5592 |
. . . 4
| |
| 6 | 5 | funfni 5375 |
. . 3
|
| 7 | 4, 6 | mpan 424 |
. 2
|
| 8 | 1, 7 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fo 5276 df-fv 5278 df-2nd 6226 |
| This theorem is referenced by: elxp7 6255 xpopth 6261 eqop 6262 op1steq 6264 2nd1st 6265 2ndrn 6268 dfoprab3 6276 elopabi 6280 mpofvex 6290 dfmpo 6308 cnvf1olem 6309 cnvoprab 6319 f1od2 6320 xpmapenlem 6945 cc2lem 7377 cnref1o 9771 fsumcnv 11690 fprodcnv 11878 qredeu 12361 qdenval 12450 xpsff1o 13123 txbas 14672 txdis 14691 iedgvalg 15558 |
| Copyright terms: Public domain | W3C validator |