ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stexg Unicode version

Theorem 1stexg 6255
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
1stexg  |-  ( A  e.  V  ->  ( 1st `  A )  e. 
_V )

Proof of Theorem 1stexg
StepHypRef Expression
1 elex 2783 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 fo1st 6245 . . . 4  |-  1st : _V -onto-> _V
3 fofn 5502 . . . 4  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
42, 3ax-mp 5 . . 3  |-  1st  Fn  _V
5 funfvex 5595 . . . 4  |-  ( ( Fun  1st  /\  A  e. 
dom  1st )  ->  ( 1st `  A )  e. 
_V )
65funfni 5377 . . 3  |-  ( ( 1st  Fn  _V  /\  A  e.  _V )  ->  ( 1st `  A
)  e.  _V )
74, 6mpan 424 . 2  |-  ( A  e.  _V  ->  ( 1st `  A )  e. 
_V )
81, 7syl 14 1  |-  ( A  e.  V  ->  ( 1st `  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   _Vcvv 2772    Fn wfn 5267   -onto->wfo 5270   ` cfv 5272   1stc1st 6226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fo 5278  df-fv 5280  df-1st 6228
This theorem is referenced by:  elxp7  6258  xpopth  6264  eqop  6265  2nd1st  6268  2ndrn  6271  releldm2  6273  reldm  6274  dfoprab3  6279  elopabi  6283  mpofvex  6293  dfmpo  6311  cnvf1olem  6312  cnvoprab  6322  f1od2  6323  disjxp1  6324  xpmapenlem  6948  cnref1o  9774  fsumcnv  11781  fprodcnv  11969  qredeu  12452  qnumval  12540  xpsff1o  13214  txbas  14763  txdis  14782  vtxvalg  15648
  Copyright terms: Public domain W3C validator