| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stexg | Unicode version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 1stexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | fo1st 6266 |
. . . 4
| |
| 3 | fofn 5522 |
. . . 4
| |
| 4 | 2, 3 | ax-mp 5 |
. . 3
|
| 5 | funfvex 5616 |
. . . 4
| |
| 6 | 5 | funfni 5395 |
. . 3
|
| 7 | 4, 6 | mpan 424 |
. 2
|
| 8 | 1, 7 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fo 5296 df-fv 5298 df-1st 6249 |
| This theorem is referenced by: elxp7 6279 xpopth 6285 eqop 6286 2nd1st 6289 2ndrn 6292 releldm2 6294 reldm 6295 dfoprab3 6300 elopabi 6304 mpofvex 6314 dfmpo 6332 cnvf1olem 6333 cnvoprab 6343 f1od2 6344 disjxp1 6345 xpmapenlem 6971 cnref1o 9807 fsumcnv 11863 fprodcnv 12051 qredeu 12534 qnumval 12622 xpsff1o 13296 txbas 14845 txdis 14864 vtxvalg 15730 vtxex 15732 |
| Copyright terms: Public domain | W3C validator |