| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stexg | Unicode version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 1stexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2811 |
. 2
| |
| 2 | fo1st 6303 |
. . . 4
| |
| 3 | fofn 5550 |
. . . 4
| |
| 4 | 2, 3 | ax-mp 5 |
. . 3
|
| 5 | funfvex 5644 |
. . . 4
| |
| 6 | 5 | funfni 5423 |
. . 3
|
| 7 | 4, 6 | mpan 424 |
. 2
|
| 8 | 1, 7 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 df-1st 6286 |
| This theorem is referenced by: elxp7 6316 xpopth 6322 eqop 6323 2nd1st 6326 2ndrn 6329 releldm2 6331 reldm 6332 dfoprab3 6337 elopabi 6341 mpofvex 6351 dfmpo 6369 cnvf1olem 6370 cnvoprab 6380 f1od2 6381 disjxp1 6382 xpmapenlem 7010 cnref1o 9846 fsumcnv 11948 fprodcnv 12136 qredeu 12619 qnumval 12707 xpsff1o 13382 txbas 14932 txdis 14951 vtxvalg 15817 vtxex 15819 wlkelvv 16060 wlk2f 16062 |
| Copyright terms: Public domain | W3C validator |