Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1stexg | Unicode version |
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
Ref | Expression |
---|---|
1stexg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2723 | . 2 | |
2 | fo1st 6099 | . . . 4 | |
3 | fofn 5391 | . . . 4 | |
4 | 2, 3 | ax-mp 5 | . . 3 |
5 | funfvex 5482 | . . . 4 | |
6 | 5 | funfni 5267 | . . 3 |
7 | 4, 6 | mpan 421 | . 2 |
8 | 1, 7 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 cvv 2712 wfn 5162 wfo 5165 cfv 5167 c1st 6080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fo 5173 df-fv 5175 df-1st 6082 |
This theorem is referenced by: elxp7 6112 xpopth 6118 eqop 6119 2nd1st 6122 2ndrn 6125 releldm2 6127 reldm 6128 dfoprab3 6133 elopabi 6137 mpofvex 6145 dfmpo 6164 cnvf1olem 6165 cnvoprab 6175 f1od2 6176 disjxp1 6177 xpmapenlem 6787 cnref1o 9541 fsumcnv 11316 fprodcnv 11504 qredeu 11954 qnumval 12039 txbas 12618 txdis 12637 |
Copyright terms: Public domain | W3C validator |