| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1stexg | Unicode version | ||
| Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.) |
| Ref | Expression |
|---|---|
| 1stexg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | fo1st 6243 |
. . . 4
| |
| 3 | fofn 5500 |
. . . 4
| |
| 4 | 2, 3 | ax-mp 5 |
. . 3
|
| 5 | funfvex 5593 |
. . . 4
| |
| 6 | 5 | funfni 5376 |
. . 3
|
| 7 | 4, 6 | mpan 424 |
. 2
|
| 8 | 1, 7 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 df-1st 6226 |
| This theorem is referenced by: elxp7 6256 xpopth 6262 eqop 6263 2nd1st 6266 2ndrn 6269 releldm2 6271 reldm 6272 dfoprab3 6277 elopabi 6281 mpofvex 6291 dfmpo 6309 cnvf1olem 6310 cnvoprab 6320 f1od2 6321 disjxp1 6322 xpmapenlem 6946 cnref1o 9772 fsumcnv 11748 fprodcnv 11936 qredeu 12419 qnumval 12507 xpsff1o 13181 txbas 14730 txdis 14749 vtxvalg 15615 |
| Copyright terms: Public domain | W3C validator |