ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stexg Unicode version

Theorem 1stexg 6135
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
1stexg  |-  ( A  e.  V  ->  ( 1st `  A )  e. 
_V )

Proof of Theorem 1stexg
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 fo1st 6125 . . . 4  |-  1st : _V -onto-> _V
3 fofn 5412 . . . 4  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
42, 3ax-mp 5 . . 3  |-  1st  Fn  _V
5 funfvex 5503 . . . 4  |-  ( ( Fun  1st  /\  A  e. 
dom  1st )  ->  ( 1st `  A )  e. 
_V )
65funfni 5288 . . 3  |-  ( ( 1st  Fn  _V  /\  A  e.  _V )  ->  ( 1st `  A
)  e.  _V )
74, 6mpan 421 . 2  |-  ( A  e.  _V  ->  ( 1st `  A )  e. 
_V )
81, 7syl 14 1  |-  ( A  e.  V  ->  ( 1st `  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136   _Vcvv 2726    Fn wfn 5183   -onto->wfo 5186   ` cfv 5188   1stc1st 6106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196  df-1st 6108
This theorem is referenced by:  elxp7  6138  xpopth  6144  eqop  6145  2nd1st  6148  2ndrn  6151  releldm2  6153  reldm  6154  dfoprab3  6159  elopabi  6163  mpofvex  6171  dfmpo  6191  cnvf1olem  6192  cnvoprab  6202  f1od2  6203  disjxp1  6204  xpmapenlem  6815  cnref1o  9588  fsumcnv  11378  fprodcnv  11566  qredeu  12029  qnumval  12117  txbas  12898  txdis  12917
  Copyright terms: Public domain W3C validator