ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1stexg Unicode version

Theorem 1stexg 6109
Description: Existence of the first member of a set. (Contributed by Jim Kingdon, 26-Jan-2019.)
Assertion
Ref Expression
1stexg  |-  ( A  e.  V  ->  ( 1st `  A )  e. 
_V )

Proof of Theorem 1stexg
StepHypRef Expression
1 elex 2723 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 fo1st 6099 . . . 4  |-  1st : _V -onto-> _V
3 fofn 5391 . . . 4  |-  ( 1st
: _V -onto-> _V  ->  1st 
Fn  _V )
42, 3ax-mp 5 . . 3  |-  1st  Fn  _V
5 funfvex 5482 . . . 4  |-  ( ( Fun  1st  /\  A  e. 
dom  1st )  ->  ( 1st `  A )  e. 
_V )
65funfni 5267 . . 3  |-  ( ( 1st  Fn  _V  /\  A  e.  _V )  ->  ( 1st `  A
)  e.  _V )
74, 6mpan 421 . 2  |-  ( A  e.  _V  ->  ( 1st `  A )  e. 
_V )
81, 7syl 14 1  |-  ( A  e.  V  ->  ( 1st `  A )  e. 
_V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128   _Vcvv 2712    Fn wfn 5162   -onto->wfo 5165   ` cfv 5167   1stc1st 6080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fo 5173  df-fv 5175  df-1st 6082
This theorem is referenced by:  elxp7  6112  xpopth  6118  eqop  6119  2nd1st  6122  2ndrn  6125  releldm2  6127  reldm  6128  dfoprab3  6133  elopabi  6137  mpofvex  6145  dfmpo  6164  cnvf1olem  6165  cnvoprab  6175  f1od2  6176  disjxp1  6177  xpmapenlem  6787  cnref1o  9541  fsumcnv  11316  fprodcnv  11504  qredeu  11954  qnumval  12039  txbas  12618  txdis  12637
  Copyright terms: Public domain W3C validator