ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2timesi GIF version

Theorem 2timesi 9166
Description: Two times a number. (Contributed by NM, 1-Aug-1999.)
Hypothesis
Ref Expression
2times.1 𝐴 ∈ ℂ
Assertion
Ref Expression
2timesi (2 · 𝐴) = (𝐴 + 𝐴)

Proof of Theorem 2timesi
StepHypRef Expression
1 2times.1 . 2 𝐴 ∈ ℂ
2 2times 9164 . 2 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
31, 2ax-mp 5 1 (2 · 𝐴) = (𝐴 + 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2176  (class class class)co 5944  cc 7923   + caddc 7928   · cmul 7930  2c2 9087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-resscn 8017  ax-1cn 8018  ax-icn 8020  ax-addcl 8021  ax-mulcl 8023  ax-mulcom 8026  ax-mulass 8028  ax-distr 8029  ax-1rid 8032  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947  df-2 9095
This theorem is referenced by:  2t2e4  9191  nn0le2xi  9345  binom2i  10793  mod2xi  12740  numexp2x  12748  sinq34lt0t  15303  tangtx  15310  ex-dvds  15666
  Copyright terms: Public domain W3C validator