![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2timesi | GIF version |
Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2times.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2times.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | 2times 8605 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ∈ wcel 1439 (class class class)co 5666 ℂcc 7409 + caddc 7414 · cmul 7416 2c2 8534 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-resscn 7498 ax-1cn 7499 ax-icn 7501 ax-addcl 7502 ax-mulcl 7504 ax-mulcom 7507 ax-mulass 7509 ax-distr 7510 ax-1rid 7513 ax-cnre 7517 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-iota 4993 df-fv 5036 df-ov 5669 df-2 8542 |
This theorem is referenced by: 2t2e4 8631 nn0le2xi 8784 binom2i 10124 ex-dvds 11930 |
Copyright terms: Public domain | W3C validator |