ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2timesi GIF version

Theorem 2timesi 8607
Description: Two times a number. (Contributed by NM, 1-Aug-1999.)
Hypothesis
Ref Expression
2times.1 𝐴 ∈ ℂ
Assertion
Ref Expression
2timesi (2 · 𝐴) = (𝐴 + 𝐴)

Proof of Theorem 2timesi
StepHypRef Expression
1 2times.1 . 2 𝐴 ∈ ℂ
2 2times 8605 . 2 (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴))
31, 2ax-mp 7 1 (2 · 𝐴) = (𝐴 + 𝐴)
Colors of variables: wff set class
Syntax hints:   = wceq 1290  wcel 1439  (class class class)co 5666  cc 7409   + caddc 7414   · cmul 7416  2c2 8534
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-resscn 7498  ax-1cn 7499  ax-icn 7501  ax-addcl 7502  ax-mulcl 7504  ax-mulcom 7507  ax-mulass 7509  ax-distr 7510  ax-1rid 7513  ax-cnre 7517
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-iota 4993  df-fv 5036  df-ov 5669  df-2 8542
This theorem is referenced by:  2t2e4  8631  nn0le2xi  8784  binom2i  10124  ex-dvds  11930
  Copyright terms: Public domain W3C validator