Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2timesi | GIF version |
Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2times.1 | ⊢ 𝐴 ∈ ℂ |
Ref | Expression |
---|---|
2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2times.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | 2times 8985 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ∈ wcel 2136 (class class class)co 5842 ℂcc 7751 + caddc 7756 · cmul 7758 2c2 8908 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-resscn 7845 ax-1cn 7846 ax-icn 7848 ax-addcl 7849 ax-mulcl 7851 ax-mulcom 7854 ax-mulass 7856 ax-distr 7857 ax-1rid 7860 ax-cnre 7864 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-2 8916 |
This theorem is referenced by: 2t2e4 9011 nn0le2xi 9164 binom2i 10563 sinq34lt0t 13392 tangtx 13399 ex-dvds 13611 |
Copyright terms: Public domain | W3C validator |