| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2timesi | GIF version | ||
| Description: Two times a number. (Contributed by NM, 1-Aug-1999.) |
| Ref | Expression |
|---|---|
| 2times.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| 2timesi | ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2times.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | 2times 9164 | . 2 ⊢ (𝐴 ∈ ℂ → (2 · 𝐴) = (𝐴 + 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (2 · 𝐴) = (𝐴 + 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2176 (class class class)co 5944 ℂcc 7923 + caddc 7928 · cmul 7930 2c2 9087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-resscn 8017 ax-1cn 8018 ax-icn 8020 ax-addcl 8021 ax-mulcl 8023 ax-mulcom 8026 ax-mulass 8028 ax-distr 8029 ax-1rid 8032 ax-cnre 8036 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-2 9095 |
| This theorem is referenced by: 2t2e4 9191 nn0le2xi 9345 binom2i 10793 mod2xi 12740 numexp2x 12748 sinq34lt0t 15303 tangtx 15310 ex-dvds 15666 |
| Copyright terms: Public domain | W3C validator |