![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2t2e4 | Unicode version |
Description: 2 times 2 equals 4. (Contributed by NM, 1-Aug-1999.) |
Ref | Expression |
---|---|
2t2e4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cn 9055 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | 2timesi 9114 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2p2e4 9111 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | eqtri 2214 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-1rid 7981 ax-cnre 7985 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-iota 5216 df-fv 5263 df-ov 5922 df-2 9043 df-3 9044 df-4 9045 |
This theorem is referenced by: 4d2e2 9145 halfpm6th 9205 div4p1lem1div2 9239 3halfnz 9417 decbin0 9590 fldiv4lem1div2uz2 10378 sq2 10709 sq4e2t8 10711 sqoddm1div8 10767 faclbnd2 10816 4bc2eq6 10848 amgm2 11265 sin4lt0 11913 z4even 12060 flodddiv4 12078 flodddiv4t2lthalf 12081 4nprm 12270 dveflem 14905 sin0pilem2 14958 sinhalfpilem 14967 sincosq1lem 15001 tangtx 15014 sincos4thpi 15016 gausslemma2dlem3 15220 m1lgs 15242 2lgslem1a2 15244 2lgslem3a 15250 2lgslem3b 15251 2lgslem3c 15252 2lgslem3d 15253 ex-fl 15287 |
Copyright terms: Public domain | W3C validator |